Sorption enhancement of 1-naphthol onto a hydrophilic hyper-cross-linked polymer resin
A hydrophilic hyper-cross-linked polymer resin NDA-150 was developed to remove 1-naphthol from the contaminated waters. The sorption performance of 1-naphthol on NDA-150 was explored and compared with that on the commercial hydrophobic resin XAD-4. The sorption rates of 1-naphthol onto both of the t...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2009-04, Vol.163 (1), p.53-57 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hydrophilic hyper-cross-linked polymer resin NDA-150 was developed to remove 1-naphthol from the contaminated waters. The sorption performance of 1-naphthol on NDA-150 was explored and compared with that on the commercial hydrophobic resin XAD-4. The sorption rates of 1-naphthol onto both of the two resins obey the pseudo-second-order kinetics, and are limited by the successive steps of film diffusion and intraparticle diffusion. The greater sorption rate on XAD-4 than NDA-150 is probably due to the larger average pore diameter of XAD-4. All the adsorption isotherms can be represented by Langmuir equation. The larger capacity and stronger affinity of NDA-150 than XAD-4 probably result from the abundant microporous structure and polar groups of NDA-150. In aqueous phase hydrophobic XAD-4 adsorbs 1-naphthol driven principally by enthalpy change, while the adsorption onto hydrophilic NDA-150 driven mainly by entropy change. The breakthrough and the total sorption capacity of NDA-150 to 1-naphthol were obtained to be 1.10 and 1.58
mmol
mL
−1 resin at 293
K, respectively. Nearly 100% regeneration efficiency for the resin was achieved by ethanol at 313
K. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2008.06.054 |