Automated recognition of patients with obstructive sleep apnoea using wavelet-based features of electrocardiogram recordings

Abstract Patients with obstructive sleep apnoea syndrome (OSAS) are at increased risk of developing hypertension and other cardiovascular diseases. This paper explores the use of support vector machines (SVMs) for automated recognition of patients with OSAS types (±) using features extracted from no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2009-01, Vol.39 (1), p.88-96
Hauptverfasser: Khandoker, Ahsan H, Karmakar, Chandan K, Palaniswami, Marimuthu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Patients with obstructive sleep apnoea syndrome (OSAS) are at increased risk of developing hypertension and other cardiovascular diseases. This paper explores the use of support vector machines (SVMs) for automated recognition of patients with OSAS types (±) using features extracted from nocturnal ECG recordings, and compares its performance with other classifiers. Features extracted from wavelet decomposition of heart rate variability (HRV) and ECG-derived respiration (EDR) signals of whole records (30 learning sets from physionet) are presented as inputs to train the SVM classifier to recognize OSAS± subjects. The optimal SVM parameter set is then determined by using a leave-one-out procedure. Independent test results have shown that an SVM using a subset of a selected combination of HRV and EDR features correctly recognized 30/30 of physionet test sets. In comparison, classification performance of K-nearest neighbour, probabilistic neural network, and linear discriminant classifiers on test data was lower. These results, therefore, demonstrate considerable potential in applying SVM in ECG-based screening and can aid sleep specialists in the initial assessment of patients with suspected OSAS.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2008.11.003