A Molecular Rotor as Viscosity Sensor in Aqueous Colloid Solutions

Background: Molecular rotors exhibit viscosity-dependent quantum yield, allowing non-mechanical determination of fluid viscosity. We analyzed fluorescence in the presence of viscosity-modulating macromolecules several orders of magnitude larger than the rotor molecule. Method of approach: Fluorescen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2004-06, Vol.126 (3), p.340-345
Hauptverfasser: Akers, W, Haidekker, M. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Molecular rotors exhibit viscosity-dependent quantum yield, allowing non-mechanical determination of fluid viscosity. We analyzed fluorescence in the presence of viscosity-modulating macromolecules several orders of magnitude larger than the rotor molecule. Method of approach: Fluorescence of aqueous starch solutions with a molecular rotor in solution was related to viscosity obtained in a cone-and-plate viscometer. Results: In dextran solutions, emission intensity was found to follow a power-law relationship with viscosity. Fluorescence in hydroxyethylstarch solutions showed biexponential behavior with different exponents at viscosities above and below 1.5 mPa s. Quantum yield was generally higher in hydroxyethylstarch than in dextran solutions. The power-law relationship was used to backcalculate viscosity from intensity with an average precision of 2.2% (range of −5.5% to 5.1%). Conclusions: This study indicates that hydrophilic molecular rotors are suitable as colloid solution viscosity probes after colloid-dependent calibration.
ISSN:0148-0731
1528-8951
DOI:10.1115/1.1762894