Protein interacting with C kinase 1 (PICK1) and GluR2 are associated with presynaptic plasma membrane and vesicles in hippocampal excitatory synapses

Abstract AMPA receptors have been identified in different populations of presynaptic terminals and found to be involved in the modulation of neurotransmitter release. The mechanisms that govern the expression of presynaptic AMPA receptors are not known. One possibility is that pre- and postsynaptic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2009-01, Vol.158 (1), p.242-252
Hauptverfasser: Haglerød, C, Kapic, A, Boulland, J.-L, Hussain, S, Holen, T, Skare, Ø, Laake, P, Ottersen, O.P, Haug, F.-M.S, Davanger, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract AMPA receptors have been identified in different populations of presynaptic terminals and found to be involved in the modulation of neurotransmitter release. The mechanisms that govern the expression of presynaptic AMPA receptors are not known. One possibility is that pre- and postsynaptic AMPA receptors are regulated according to the same principles. To address this hypothesis we investigated whether protein interacting with C kinase 1 (PICK1), known to interact with AMPA receptors postsynaptically, also is expressed presynaptically, together with AMPA receptors. Subfractionation and high-resolution immunogold analyses of the rat hippocampus revealed that GluR2 and PICK1 are enriched postsynaptically, but also in presynaptic membrane compartments, including the active zone and vesicular membranes. PICK1 and GluR2 are associated with the same vesicles, which are immunopositive also for synaptophysin and vesicle-associated membrane protein 2. Based on what is known about the function of PICK1 postsynaptically, the present data suggest that PICK1 is involved in the regulation of presynaptic AMPA receptor trafficking and in determining the size of the AMPA receptor pool that modulates presynaptic glutamate release.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2008.11.029