Evolution of developmental canalization in networks of competing boolean nodes
Developmental canalization, which leads to a reduction in the variation of phenotype expression relative to the complexity of the genome, has long been thought to be an important property of evolving biological systems. We demonstrate that a highly canalized state develops in the process of self-org...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2004-07, Vol.93 (3), p.038101.1-038101.4, Article 038101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developmental canalization, which leads to a reduction in the variation of phenotype expression relative to the complexity of the genome, has long been thought to be an important property of evolving biological systems. We demonstrate that a highly canalized state develops in the process of self-organization recently discovered in N-K Boolean networks that evolve based on a competition between the nodes. The model provides a simplified description of the evolution of genetic regulatory networks in developmental systems. The mechanism responsible for the evolution is shown to be a balance of two dynamical effects which compete to bring the network to a nonrandom critical steady state. Unlike other proposed evolutionary mechanisms that select for canalization, this mechanism does so while maintaining the system's capacity for further evolution in the steady state. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.93.038101 |