CONDORR--CONstrained Dynamics of Rigid Residues: a molecular dynamics program for constrained molecules

A computer program CONDORR (CONstrained Dynamics of Rigid Residues) was developed for molecular dynamics simulations of large and/or constrained molecular systems, particularly carbohydrates. CONDORR efficiently calculates molecular trajectories on the basis of 2D or 3D potential energy maps, and ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2004-08, Vol.10 (4), p.271-289
Hauptverfasser: York, William S, Yi, Xiaobing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A computer program CONDORR (CONstrained Dynamics of Rigid Residues) was developed for molecular dynamics simulations of large and/or constrained molecular systems, particularly carbohydrates. CONDORR efficiently calculates molecular trajectories on the basis of 2D or 3D potential energy maps, and can generate such maps based on a simple force field. The simulations involve three translational and three rotational degrees of freedom for each rigid, asymmetrical residue in the model. Total energy and angular momentum are conserved when no stochastic or external forces are applied to the model, if the time step is kept sufficiently short. Application of Langevin dynamics allows longer time steps, providing efficient exploration of conformational space. The utility of CONDORR was demonstrated by application to a constrained polysaccharide model and to the calculation of residual dipolar couplings for a disaccharide. [Figure: see text]. Molecular models (bottom) are created by cloning rigid residue archetypes (top) and joining them together. As defined here, the archetypes AX, HM and BG respectively correspond to an alpha-D-Xyl p residue, a hydroxymethyl group, and a beta-D-Glc p residue lacking O6, H6a and H6b. Each archetype contains atoms (indicated by boxes) that can be shared with other archetypes to form a linked structure. For example, the glycosidic link between the two D-Glc p residues is established by specifying that O1 of the nonreducing beta-D-Glc p (BG) residue (2) is identical to O4 of the reducing Glc p (BG) residue (1). The coordinates of the two residues are adjusted so as to superimpose these two (nominally distinct) atoms. Flexible hydroxymethyl (HM) groups (3 and 4) are treated as separate residues, and the torsional angles (normally indicated by the symbol omega) that define their geometric relationships to the pyranosyl rings of the BG residues are specified as psi3 and psi4, respectively. The torsional angles phi3 and phi4, defined solely to maintain the orientation of the geminal H-atoms of the hydroxymethyl group, are not shown. (See text.). The illustrated trisaccharide is thus specified as a collection of 5 residues which are represented by 3 archetypes. Models of the disaccharide cellobiose (beta-D-Glc p-(1-->4)-D-Glc p) must include residues 1 and 2, but the hydroxymethyl groups (residues 3 and 4) can also be explicitly included in this model
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-004-0193-x