Effects of Donor Age and Cell Senescence on Kidney Allograft Survival

The biological processes responsible for somatic cell senescence contribute to organ aging and progression of chronic diseases, and this may contribute to kidney transplant outcomes. We examined the effect of pre‐existing donor aging on the performance of kidney transplants, comparing mouse kidney i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of transplantation 2009-01, Vol.9 (1), p.114-123
Hauptverfasser: Melk, A., Schmidt, B. M. W., Braun, H., Vongwiwatana, A., Urmson, J., Zhu, L.‐F., Rayner, D., Halloran, P. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biological processes responsible for somatic cell senescence contribute to organ aging and progression of chronic diseases, and this may contribute to kidney transplant outcomes. We examined the effect of pre‐existing donor aging on the performance of kidney transplants, comparing mouse kidney isografts and allografts from old versus young donors. Before transplantation, old kidneys were histologically normal, but displayed an increased expression of senescence marker p16INK4a. Old allografts at day 7 showed a more rapid emergence of epithelial changes and a further increase in the expression of p16INK4a. Similar but much milder changes occurred in old isografts. These changes were absent in young allografts at day 7, but emerged by day 21. The expression of p16INK4a remained low in young kidney allografts at day 7, but increased with severe rejection at day 21. Isografts from young donors showed no epithelial changes and no increase in p16INK4a. The measurements of the alloimmune response—infiltrate, cytology, expression of perforin, granzyme B, IFN‐γ and MHC—were not increased in old allografts. Thus, old donor kidneys display abnormal parenchymal susceptibility to transplant stresses and enhanced induction of senescence marker p16INK4a, but were not more immunogenic. These data are compatible with a key role of somatic cell senescence mechanisms in kidney transplant outcomes by contributing to donor aging, being accelerated by transplant stresses, and imposing limits on the capacity of the tissue to proliferate. Old donor kidneys display abnormal parenchymal susceptibility to transplant stresses and enhanced induction of senescence marker p16INK4a, but are not more immunogenic.
ISSN:1600-6135
1600-6143
DOI:10.1111/j.1600-6143.2008.02500.x