Identification of the head-neck complex in response to trunk horizontal vibration

A method is proposed for identifying the head-neck complex (HNC) in the seated human body when it is exposed to the trunk horizontal (fore-and-aft) vibration. It is assumed that the HNC only has the anteroposterior (flexion/extension) motion in the sagittal plane. An electrohydraulic vibrator is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2004-05, Vol.90 (6), p.418-426
Hauptverfasser: Fard, M A, Ishihara, T, Inooka, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method is proposed for identifying the head-neck complex (HNC) in the seated human body when it is exposed to the trunk horizontal (fore-and-aft) vibration. It is assumed that the HNC only has the anteroposterior (flexion/extension) motion in the sagittal plane. An electrohydraulic vibrator is used as a source of vibration. To generate the trunk horizontal vibration, the trunk of the seated subject is fixed to the seatback. The subjects are exposed to the random vibration at a magnitude of 1.60 ms(-2) rms (root-mean-square) for 50 s. The coherence and frequency response function are then obtained in the frequency range 0.5-3 Hz. The results show that the HNC behavior is quasilinear with a resonance frequency between 1 and 1.4 Hz. Accordingly, a two-dimensional single-inverted pendulum is considered as a model for the HNC. The frequency domain identification method is then used to estimate the unknown parameters, including the HNC viscoelastic and inertia parameters. The model is examined in a time domain using the random vibration. Good agreement is obtained between experimental and simulation results, indicating the reliability of the proposed method.
ISSN:0340-1200
1432-0770
DOI:10.1007/s00422-004-0489-z