The cause of the artifact in 4-slice helical computed tomography
The causes of the image artifacts in a 4-slice helical computed tomography have been discussed as follows: (1) changeover in pairs of data used in z interpolation, (2) sampling interval in z, and (3) the cone angle. This study analyzes the first two causes of the artifact and describes how the curre...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2004-07, Vol.31 (7), p.2033-2037 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The causes of the image artifacts in a 4-slice helical computed tomography have been discussed as follows: (1) changeover in pairs of data used in z interpolation, (2) sampling interval in z, and (3) the cone angle. This study analyzes the first two causes of the artifact and describes how the current algorithm [K. Taguchi and H. Aradate, Radiology 205P, 390 (1997); 205P, 618 (1997); Med. Phys. 25, 550–561 (1998); H. Hu, ibid.
26, 5–18 (1999); S. Schaller et al., IEEE Trans. Med. Imaging 19, 822–834 (2000); K. Taguchi, Ph.D. thesis, University of Tsukuba, 2002] solves the problem. An interpolated sinogram for a slice at the edge of a ball phantom shows discontinuity caused by the changeover. If we extend the streak artifact in the reconstructed image, it crosses the focus orbit at the corresponding projection angle. Applying z filtering can reduce such causes by its feathering effect and mixing data obtained by different cone angles; the best results are provided when z filtering is applied to densely sampled helical data. |
---|---|
ISSN: | 0094-2405 2473-4209 |
DOI: | 10.1118/1.1763005 |