Intracellular calcium transients are necessary for platelet-derived growth factor but not extracellular matrix protein–induced vascular smooth muscle cell migration

Vascular smooth muscle cell (SMC) migration is a critical component of the hyperplastic response that leads to recurrent stenosis after interventions to treat arterial occlusive disease. We investigated the relationship between intracellular calcium ([Ca 2+] i) and migration of vascular SMCs in resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular surgery 2004-08, Vol.40 (2), p.351-358
Hauptverfasser: Hollenbeck, Scott T, Nelson, Peter R, Yamamura, Shinji, Faries, Peter L, Liu, Bo, Kent, K.Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vascular smooth muscle cell (SMC) migration is a critical component of the hyperplastic response that leads to recurrent stenosis after interventions to treat arterial occlusive disease. We investigated the relationship between intracellular calcium ([Ca 2+] i) and migration of vascular SMCs in response to platelet-derived growth factor (PDGF) and extracellular matrix (ECM) proteins. Human saphenous vein SMCs were used for all experiments. SMC migration in response to agonists was measured with a microchemotaxis assay. A standard fluorimetric assay was used to assess changes in [Ca 2+] i in response to the various combinations of growth factors and ECM proteins. The calcium ionophore A23187 produced a rapid rise in [Ca 2+] i and a corresponding 60% increase in SMC migration, whereas chelation of [Ca 2+] i with BAPTA (1,2- bis [aminophenoxy] ethane- N,N,N′,N′-tetraacetic acid) produced a fivefold decrease in PDGF-induced chemotaxis, suggesting that [Ca 2+] i is both sufficient and necessary for SMC migration. Stimulation of SMCs with PDGF produced an early peak followed by a late plateau in [Ca 2+] i. To establish a relationship between temporal fluctuations in [Ca 2+] i and SMC migration, SMCs were pretreated with caffeine and ryanadine, which eliminated the initial peak but not the late plateau in [Ca 2+] i, and had no effect on chemotaxis in response to PDGF. Incubation of SMCs with nickel chloride eliminated the late plateau, but had no effect on the initial peak in [Ca 2+] i, and reduced PDGF-stimulated migration by fivefold. We then evaluated the role of calcium in SMC migration induced by ECM proteins such as laminin, fibronectin, and collagen types I and IV. All four matrix proteins stimulated SMC migration, but none produced an elevation in [Ca 2+] i. Moreover, preincubation of SMCs with caffeine and ryanadine or nickel chloride had no effect on ECM protein-induced chemotaxis. [Ca 2+] i transients are necessary for PDGF but not ECM protein-induced SMC chemotaxis. Moreover, the ability of PDGF to stimulate vascular SMC migration appears dependent on influx of extracellular calcium through membrane channels. Recurrent stenosis after angioplasty or surgical bypass remains a significant challenge in treating vascular occlusive disease. In addition to growth factors, extracellular matrix (ECM) proteins may be potent agonists of this process. In this study we show that the influx of extracellular calcium is an important mechanism for platelet-derived gro
ISSN:0741-5214
1097-6809
DOI:10.1016/j.jvs.2004.03.047