Nicorandil improves diabetes and rat islet β-cell damage induced by streptozotocin in vivo and in vitro
N-(2-hydroxyethyl)-nicotinamide nitrate (nicorandil) is a unique anti-anginal agent, reported to act as both an ATP-sensitive K(+) channel opener (PCO) and a nitric oxide donor. It also has an anti-oxidant action. We examined the effects of nicorandil on streptozotocin (STZ)-induced islet beta-cell...
Gespeichert in:
Veröffentlicht in: | European journal of endocrinology 2004-08, Vol.151 (2), p.277-285 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | N-(2-hydroxyethyl)-nicotinamide nitrate (nicorandil) is a unique anti-anginal agent, reported to act as both an ATP-sensitive K(+) channel opener (PCO) and a nitric oxide donor. It also has an anti-oxidant action. We examined the effects of nicorandil on streptozotocin (STZ)-induced islet beta-cell damage both in vivo and in vitro.
STZ-induced diabetic Brown Norway rats (STZ-DM) were fed with nicorandil-containing chow from day 2 (STZ-DM-N48), 3 (STZ-DM-N72), and 4 (STZ-DM-N96) to day 30. Body weight, blood glucose, and plasma insulin were measured every week. For the in vitro assay, neonatal rat islet-rich cultures were performed and cells were treated with nicorandil from 1 h before to 2 h after exposure to STZ for 30 min. Insulin secretion from islet cells was assayed after an additional 24 h of culture. We also observed the effect of nicorandil on the generation of reactive oxygen species (ROS) from rat inslinoma cells (RINm5F).
Body weight loss and blood glucose levels of STZ-DM-N48 rats were significantly lower than those of STZ-DM rats. Immunohistochemical staining of insulin showed preservation of insulin-secreting islet beta-cells in STZ-DM-N48 rats. Nicorandil also dose-dependently recovered the insulin release from neonatal rat islet cells treated with STZ in in vitro experiments. Nicorandil did not act as a PCO on neonatal rat islet beta-cells or RINm5F cells, and did not show an inhibitory effect on poly(ADP-ribose) polymerase-1. However, the drug inhibited the production of ROS stimulated by high glucose (22.0 mmol/l) in RINm5F cells.
These results suggested that nicorandil improves diabetes and rat islet beta-cell damage induced by STZ in vivo and in vitro. It protects islet beta-cells, at least partly, via a radical scavenging effect. |
---|---|
ISSN: | 0804-4643 1479-683X |
DOI: | 10.1530/eje.0.1510277 |