Vulnerability of Water Distribution Systems to Pathogen Intrusion: How Effective Is a Disinfectant Residual?
Can the spread of infectious disease through water distribution systems be halted by a disinfectant residual? This question is overdue for an answer. Regulatory agencies and water utilities have long been concerned about accidental intrusions of pathogens into distribution system pipelines (i.e., cr...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2004-07, Vol.38 (13), p.3713-3722 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Can the spread of infectious disease through water distribution systems be halted by a disinfectant residual? This question is overdue for an answer. Regulatory agencies and water utilities have long been concerned about accidental intrusions of pathogens into distribution system pipelines (i.e., cross-connections) and are increasingly concerned about deliberate pathogen contamination. Here, a simulation framework is developed and used to assess the vulnerability of a water system to microbiological contamination. The risk of delivering contaminated water to consumers is quantified by a network water quality model that includes disinfectant decay and disinfection kinetics. The framework is applied to two example networks under a worst-case deliberate intrusion scenario. Results show that the risk of consumer exposure is affected by the residual maintenance strategy employed. The common regulation that demands a “detectable” disinfectant residual may not provide effective consumer protection against microbial contamination. A chloramine residual, instead of free chlorine, may significantly weaken this final barrier against pathogen intrusions. Moreover, the addition of a booster station at storage tanks may improve consumer protection without requiring excessive disinfectant. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es035271z |