How a G Protein Binds a Membrane

Heterotrimeric G proteins interact with receptors and effectors at the membrane-cytoplasm interface. Structures of soluble forms have not revealed how they interact with membranes. We have used electron crystallography to determine the structure in ice of a helical array of the photoreceptor G prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-08, Vol.279 (32), p.33937-33945
Hauptverfasser: Zhang, Zhixian, Melia, Thomas J., He, Feng, Yuan, Ching, McGough, Amy, Schmid, Michael F., Wensel, Theodore G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterotrimeric G proteins interact with receptors and effectors at the membrane-cytoplasm interface. Structures of soluble forms have not revealed how they interact with membranes. We have used electron crystallography to determine the structure in ice of a helical array of the photoreceptor G protein, transducin, bound to the surface of a tubular lipid bilayer. The protein binds to the membrane with a very small area of contact, restricted to two points, between the surface of the protein and the surface of the lipids. Fitting the x-ray structure into the membrane-bound structure reveals one membrane contact near the lipidated Gγ C terminus and Gα N terminus, and another near the Gα C terminus. The narrowness of the tethers to the lipid bilayer provides flexibility for the protein to adopt multiple orientations on the membrane, and leaves most of the G protein surface area available for protein-protein interactions.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M403404200