How a G Protein Binds a Membrane
Heterotrimeric G proteins interact with receptors and effectors at the membrane-cytoplasm interface. Structures of soluble forms have not revealed how they interact with membranes. We have used electron crystallography to determine the structure in ice of a helical array of the photoreceptor G prote...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-08, Vol.279 (32), p.33937-33945 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterotrimeric G proteins interact with receptors and effectors at the membrane-cytoplasm interface. Structures of soluble forms have not revealed how they interact with membranes. We have used electron crystallography to determine the structure in ice of a helical array of the photoreceptor G protein, transducin, bound to the surface of a tubular lipid bilayer. The protein binds to the membrane with a very small area of contact, restricted to two points, between the surface of the protein and the surface of the lipids. Fitting the x-ray structure into the membrane-bound structure reveals one membrane contact near the lipidated Gγ C terminus and Gα N terminus, and another near the Gα C terminus. The narrowness of the tethers to the lipid bilayer provides flexibility for the protein to adopt multiple orientations on the membrane, and leaves most of the G protein surface area available for protein-protein interactions. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M403404200 |