RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia
The dominant polyglutamine expansion diseases, which include spinocerebellar ataxia type 1 (SCA1) and Huntington disease, are progressive, untreatable, neurodegenerative disorders. In inducible mouse models of SCA1 and Huntington disease, repression of mutant allele expression improves disease pheno...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2004-08, Vol.10 (8), p.816-820 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dominant polyglutamine expansion diseases, which include spinocerebellar ataxia type 1 (SCA1) and Huntington disease, are progressive, untreatable, neurodegenerative disorders. In inducible mouse models of SCA1 and Huntington disease, repression of mutant allele expression improves disease phenotypes. Thus, therapies designed to inhibit expression of the mutant gene would be beneficial. Here we evaluate the ability of RNA interference (RNAi) to inhibit polyglutamine-induced neurodegeneration caused by mutant ataxin-1 in a mouse model of SCA1. Upon intracerebellar injection, recombinant adeno-associated virus (AAV) vectors expressing short hairpin RNAs profoundly improved motor coordination, restored cerebellar morphology and resolved characteristic ataxin-1 inclusions in Purkinje cells of SCA1 mice. Our data demonstrate
in vivo
the potential use of RNAi as therapy for dominant neurodegenerative disease. |
---|---|
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/nm1076 |