Anandamide transport inhibitor AM404 and structurally related compounds inhibit synaptic transmission between rat hippocampal neurons in culture independent of cannabinoid CB1 receptors
N-(hydroxyphenyl)-arachidonamide (AM404) is an inhibitor of endocannabinoid transport. We examined the effects of AM404 on glutamatergic synaptic transmission using network-driven increases in intracellular Ca2+ concentration ([Ca2+] spikes) as an assay. At a concentration of 1 microM AM404 inhibite...
Gespeichert in:
Veröffentlicht in: | European journal of pharmacology 2004-08, Vol.496 (1-3), p.33-39 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | N-(hydroxyphenyl)-arachidonamide (AM404) is an inhibitor of endocannabinoid transport. We examined the effects of AM404 on glutamatergic synaptic transmission using network-driven increases in intracellular Ca2+ concentration ([Ca2+] spikes) as an assay. At a concentration of 1 microM AM404 inhibited [Ca2+]i spiking by 73+/-8%. The cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), the vanilloid VR1 receptor antagonist capsazepine (CPZ), and treatment with pertussis toxin failed to block AM404-mediated inhibition. AM404 (3 microM) inhibited action-potential-evoked Ca2+ influx by 58+/-3% but failed to affect calcium influx evoked by depolarization with 30 mM K+, suggesting that the inhibition of electrically evoked [Ca2+]i increases and that [Ca2+]i spiking was due to inhibition of Na+ channels. Palmitoylethanolamide (PMEA), capsaicin (CAP) and (5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide (VDM11), compounds structurally similar to AM404, inhibited [Ca2+]i spiking by 34+/-10%, 42+/-18% and 67+/-12%, respectively. Thus, AM404 and related compounds inhibit depolarization-induced Ca2+ influx independent of cannabinoid receptors, suggesting caution when using these agents as pharmacological probes to study synaptic transmission. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/j.ejphar.2004.06.011 |