Identification of evolutionarily conserved promoter elements and amino acids required for function of the C. elegans beta-catenin homolog BAR-1

beta-catenins are conserved transcription factors regulated posttranslationally by Wnt signaling. bar-1 encodes a Caenorhabditis elegans beta-catenin acting in multiple Wnt-mediated processes, including cell fate specification by vulval precursor cells (VPCs) and migration of the Q(L) neuroblast pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2004-08, Vol.272 (2), p.536-557
Hauptverfasser: Natarajan, L, Jackson, B M, Szyleyko, E, Eisenmann, D M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:beta-catenins are conserved transcription factors regulated posttranslationally by Wnt signaling. bar-1 encodes a Caenorhabditis elegans beta-catenin acting in multiple Wnt-mediated processes, including cell fate specification by vulval precursor cells (VPCs) and migration of the Q(L) neuroblast progeny. We took two approaches to extend our knowledge of bar-1 function. First, we undertook a bar-1 promoter analysis using transcriptional GFP reporter fusions and found that bar-1 expression is regulated in specific cells at the transcriptional level. We identified promoter elements necessary for bar-1 expression in several cell types, including a 321-bp element sufficient for expression in ventral cord neurons (VCNs) and a 1.1-kb element sufficient for expression in the developing vulva and adult seam cells. Expression of bar-1 from the 321-bp element rescued the Uncoordinated (Unc) phenotype of bar-1 mutants, but not the vulval phenotype, suggesting that a Wnt pathway may act in ventral cord neurons to mediate proper locomotion. By comparison of the 1.1-kb element to homologous sequences from Caenorhabditis briggsae, we identified evolutionarily conserved sequences necessary for expression in vulval or seam cells. Second, we analyzed 24 mutations in bar-1 and identified several residues required for BAR-1 activity in C. elegans. By phylogenetic comparison, we found that most of these residues are conserved and may identify amino acids necessary for beta-catenin function in all species.
ISSN:0012-1606
DOI:10.1016/j.ydbio.2004.05.027