The application of support vector machines for detecting recovery from knee replacement surgery using spatio-temporal gait parameters

Abstract Knee osteoarthritis (OA) is one of the leading causes of disability among the elderly which, depending on severity, may require surgical intervention. Knee replacement surgery provides pain relief and improves physical function including gait. However gait dysfunction such as altered spatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gait & posture 2009-01, Vol.29 (1), p.91-96
Hauptverfasser: Levinger, Pazit, Lai, Daniel T.H, Begg, Rezaul K, Webster, Kate E, Feller, Julian A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Knee osteoarthritis (OA) is one of the leading causes of disability among the elderly which, depending on severity, may require surgical intervention. Knee replacement surgery provides pain relief and improves physical function including gait. However gait dysfunction such as altered spatio-temporal measures may persist after the surgery. In this paper, we investigated the application of support vector machines (SVM) to classify gait patterns indicative of knee OA before surgery based on 12 spatio-temporal gait parameters and investigated whether SVMs could be used to predict gait improvement 2 and 12 months following knee replacement surgery. Test results for the pre-operative data indicated that the SVM could successfully identify individuals with OA gait from the healthy using all of the spatio-temporal parameters with a maximum leave one out accuracy of 100% for the training set and 88.89% for the test set. Findings indicated that three patients still had altered gait patterns 2 months post-knee replacement surgery, but all individuals showed improvement in gait 12 months following surgery. Consequently, the SVM detected improvement in gait function due to surgical intervention at 2 and 12 months following knee replacement which coincided with clinical assessment of the knee. This suggests that spatio-temporal parameters contain important discriminative information which may be used for the identification of pathological gait using an SVM classifier.
ISSN:0966-6362
1879-2219
DOI:10.1016/j.gaitpost.2008.07.004