Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain

Whereas several studies reported a close relationship between changes in the somatotopic organization of primary somatosensory cortex and phantom limb pain, the relationship between alterations in the motor cortex and amputation-related phenomena has not yet been explored in detail. This study used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pain (Amsterdam) 2004-07, Vol.110 (1), p.90-102
Hauptverfasser: Karl, Anke, Mühlnickel, Werner, Kurth, Ralf, Flor, Herta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Whereas several studies reported a close relationship between changes in the somatotopic organization of primary somatosensory cortex and phantom limb pain, the relationship between alterations in the motor cortex and amputation-related phenomena has not yet been explored in detail. This study used steady-state movement-related cortical potentials (MRCPs) combined with neuroelectric source imaging to assess the relationship of changes in motor cortex and amputation-related phenomena such as painful and non-painful phantom and residual limb sensations, telescoping, and prosthesis use. Eight upper limb amputees were investigated. A significant positive relationship between reorganization of the motor cortex (distance of the MRCP source location from the mirrored source for hand movement) and phantom limb pain was found. Non-painful phantom sensations as well as painful and non-painful residual limb sensations were unrelated to motor cortical reorganization. A higher amount of motor reorganization was associated with less daily prosthesis use, which also tended to be related to more severe phantom limb pain. These results extend previous findings of a positive relationship between somatosensory reorganization and phantom limb pain to the motor domain and suggest a potential positive effect of prosthesis use on phantom limb pain and cortical reorganization.
ISSN:0304-3959
1872-6623
DOI:10.1016/j.pain.2004.03.013