Sensitization by 5-Azacytidine toward Death Receptor-Induced Hepatic Apoptosis

5-Azacytidine (5-aza-CR) is a DNA-hypomethylating antineoplastic agent used because of its inhibitory activity on DNA methyltransferases. Today, it is approved as an epigenetically active drug therapy for treatment of myelodysplastic disorders, with a contraindication as to pre-existing liver diseas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pharmacology and experimental therapeutics 2009-01, Vol.328 (1), p.107-115
Hauptverfasser: Weiland, Timo, Weiller, Markus, Künstle, Gerald, Wendel, Albrecht
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:5-Azacytidine (5-aza-CR) is a DNA-hypomethylating antineoplastic agent used because of its inhibitory activity on DNA methyltransferases. Today, it is approved as an epigenetically active drug therapy for treatment of myelodysplastic disorders, with a contraindication as to pre-existing liver diseases. Because the mechanism of its hepatotoxicity is still unknown, we investigated the pharmacodynamic properties of 5-aza-CR with regard to death receptor/ligand-induced apoptosis and the mode of execution of cell death. In a time- and concentration-dependent manner, primary murine, human hepatocytes and HepG2 cells exposed to 5-aza-CR became highly sensitive toward cell death induced by CD95L, tumor necrosis factor (TNF)-related apoptosis-inducing ligand, or TNF. Cell death was characterized as apoptotic by membrane blebbing, chromatin condensation, and exposure of phosphatidylserine on the outer membrane. Neither 5-aza-2′-deoxycytidine nor the common DNA methyltransferase inhibitors S -(5′-adenosyl)- l -homocysteine or RG 108 showed any significant effects under these conditions. Despite the complete protection of HepG2 by high concentrations of the pan-caspase inhibitor N -benzyloxycarbonyl-Val-Ala-Asp( O -Me) fluoromethyl ketone (z-VAD-fmk), effector caspase-3/7 activity was completely abolished at approximately a 20-fold lower concentration of z-VAD-fmk. Under these conditions, the serine protease inhibitors N ,α-tosyl- l -phenylalanine chloromethyl ketone, N , p -tosyl- l -lysine chloromethyl ketone, and 4-(2-aminoethyl)-benzenesulfonyl fluoride, respectively, conferred protection against death receptor ligands. We conclude that this caspase-independent apoptosis is executed by a yet-unidentified serine protease.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.108.143560