A preconcentrator coupled to a GC/FTMS: advantages of self-chemical ionization, mass measurement accuracy, and high mass resolving power for GC applications
Coupling of a cryogenic preconcentrator (PC) to a gas chromatograph/Fourier transform ion cyclotron resonance mass spectrometer (GC/FT-ICR MS) is reported. To demonstrate the analytical capabilities of the PC/GC/FT-ICR MS, headspace samples containing volatile organic compounds (VOCs) emitted from d...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2004-08, Vol.15 (8), p.1191-1200 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coupling of a cryogenic preconcentrator (PC) to a gas chromatograph/Fourier transform ion cyclotron resonance mass spectrometer (GC/FT-ICR MS) is reported. To demonstrate the analytical capabilities of the PC/GC/FT-ICR MS, headspace samples containing volatile organic compounds (VOCs) emitted from detached pine tree twigs were analyzed. Sub-ppm mass measurement accuracy (MMA) for highly resolved (m/Δm
50% > 150 k) terpene ions was achieved. Direct PC/GC/FT-ICR MS analyses revealed that detached twigs from pine trees emit acetone, camphor, and four detectable hydrocarbon isomers with C
10H
16 empirical formula. The unknown analytes were identified based on accurate mass measurement and their mass spectral appearances. Authentic samples were used to confirm initially unknown identifications. Self-chemical-ionization (SCI) reactions furnished an additional dimension for rapid isomer differentiation of GC eluents in real time. |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1016/j.jasms.2004.03.003 |