Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data

For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Information and Computer Sciences 2004-07, Vol.44 (4), p.1358-1364
Hauptverfasser: Ott, Thomas, Kern, Albert, Schuffenhauer, Ausgar, Popov, Maxim, Acklin, Pierre, Jacoby, Edgar, Stoop, Ruedi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1364
container_issue 4
container_start_page 1358
container_title Journal of Chemical Information and Computer Sciences
container_volume 44
creator Ott, Thomas
Kern, Albert
Schuffenhauer, Ausgar
Popov, Maxim
Acklin, Pierre
Jacoby, Edgar
Stoop, Ruedi
description For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach.
doi_str_mv 10.1021/ci049905c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66743460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>699655671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-d9748a19826d5f82ca1419d79b5f3c09bc18265376be3354b8c3c9e89d93d88b3</originalsourceid><addsrcrecordid>eNpl0EtLJDEQB_AgKzo-DvsFlmbBhT205t3JUcZ1RxAVZkTxEqrT6TFuP8akG_TbG5lBwT0Fqn5Uqv4IfSf4mGBKTqzHXGss7BaaEMF1riW-_4YmGGuRU8bULtqL8QljxrSkO2iXCFpQxfkEubl7Hl03eGiy-bhyYQUBWlh2bvA2mzZjHFzw3TKr-5DddqWH6KpUhxh97S0Mvu-yvs5mfvmYn_nWdTFV0rDpo2tTv8nOYIADtF1DE93h5t1Ht-d_FtNZfnn992J6epkDK-SQV7rgCohWVFaiVtQC4URXhS5FzSzWpSWpJZItHWOCl8oyq53SlWaVUiXbR7_Wc1ehT2fFwbQ-Wtc00Ll-jEbKgjMucYI_v8Cnfgxp72gokZRTUbyj32tkQx9jcLVZBd9CeDUEm_fgzUfwyf7YDBzL1lWfcpN0Avka-JToy0cfwj8jC1YIs7iZm9nd_Iqzxcw8JH-09mDj53L_f_wG5R6ZCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216242570</pqid></control><display><type>article</type><title>Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data</title><source>ACS Publications</source><creator>Ott, Thomas ; Kern, Albert ; Schuffenhauer, Ausgar ; Popov, Maxim ; Acklin, Pierre ; Jacoby, Edgar ; Stoop, Ruedi</creator><creatorcontrib>Ott, Thomas ; Kern, Albert ; Schuffenhauer, Ausgar ; Popov, Maxim ; Acklin, Pierre ; Jacoby, Edgar ; Stoop, Ruedi</creatorcontrib><description>For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach.</description><identifier>ISSN: 0095-2338</identifier><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>EISSN: 1520-5142</identifier><identifier>DOI: 10.1021/ci049905c</identifier><identifier>PMID: 15272844</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binary system ; Chemicals ; Classification ; Computer science ; Magnetism</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2004-07, Vol.44 (4), p.1358-1364</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>Copyright American Chemical Society Jul/Aug 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-d9748a19826d5f82ca1419d79b5f3c09bc18265376be3354b8c3c9e89d93d88b3</citedby><cites>FETCH-LOGICAL-a376t-d9748a19826d5f82ca1419d79b5f3c09bc18265376be3354b8c3c9e89d93d88b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci049905c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci049905c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15272844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ott, Thomas</creatorcontrib><creatorcontrib>Kern, Albert</creatorcontrib><creatorcontrib>Schuffenhauer, Ausgar</creatorcontrib><creatorcontrib>Popov, Maxim</creatorcontrib><creatorcontrib>Acklin, Pierre</creatorcontrib><creatorcontrib>Jacoby, Edgar</creatorcontrib><creatorcontrib>Stoop, Ruedi</creatorcontrib><title>Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach.</description><subject>Binary system</subject><subject>Chemicals</subject><subject>Classification</subject><subject>Computer science</subject><subject>Magnetism</subject><issn>0095-2338</issn><issn>1549-9596</issn><issn>1549-960X</issn><issn>1520-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpl0EtLJDEQB_AgKzo-DvsFlmbBhT205t3JUcZ1RxAVZkTxEqrT6TFuP8akG_TbG5lBwT0Fqn5Uqv4IfSf4mGBKTqzHXGss7BaaEMF1riW-_4YmGGuRU8bULtqL8QljxrSkO2iXCFpQxfkEubl7Hl03eGiy-bhyYQUBWlh2bvA2mzZjHFzw3TKr-5DddqWH6KpUhxh97S0Mvu-yvs5mfvmYn_nWdTFV0rDpo2tTv8nOYIADtF1DE93h5t1Ht-d_FtNZfnn992J6epkDK-SQV7rgCohWVFaiVtQC4URXhS5FzSzWpSWpJZItHWOCl8oyq53SlWaVUiXbR7_Wc1ehT2fFwbQ-Wtc00Ll-jEbKgjMucYI_v8Cnfgxp72gokZRTUbyj32tkQx9jcLVZBd9CeDUEm_fgzUfwyf7YDBzL1lWfcpN0Avka-JToy0cfwj8jC1YIs7iZm9nd_Iqzxcw8JH-09mDj53L_f_wG5R6ZCA</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Ott, Thomas</creator><creator>Kern, Albert</creator><creator>Schuffenhauer, Ausgar</creator><creator>Popov, Maxim</creator><creator>Acklin, Pierre</creator><creator>Jacoby, Edgar</creator><creator>Stoop, Ruedi</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data</title><author>Ott, Thomas ; Kern, Albert ; Schuffenhauer, Ausgar ; Popov, Maxim ; Acklin, Pierre ; Jacoby, Edgar ; Stoop, Ruedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-d9748a19826d5f82ca1419d79b5f3c09bc18265376be3354b8c3c9e89d93d88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Binary system</topic><topic>Chemicals</topic><topic>Classification</topic><topic>Computer science</topic><topic>Magnetism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ott, Thomas</creatorcontrib><creatorcontrib>Kern, Albert</creatorcontrib><creatorcontrib>Schuffenhauer, Ausgar</creatorcontrib><creatorcontrib>Popov, Maxim</creatorcontrib><creatorcontrib>Acklin, Pierre</creatorcontrib><creatorcontrib>Jacoby, Edgar</creatorcontrib><creatorcontrib>Stoop, Ruedi</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ott, Thomas</au><au>Kern, Albert</au><au>Schuffenhauer, Ausgar</au><au>Popov, Maxim</au><au>Acklin, Pierre</au><au>Jacoby, Edgar</au><au>Stoop, Ruedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>44</volume><issue>4</issue><spage>1358</spage><epage>1364</epage><pages>1358-1364</pages><issn>0095-2338</issn><issn>1549-9596</issn><eissn>1549-960X</eissn><eissn>1520-5142</eissn><abstract>For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15272844</pmid><doi>10.1021/ci049905c</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-2338
ispartof Journal of Chemical Information and Computer Sciences, 2004-07, Vol.44 (4), p.1358-1364
issn 0095-2338
1549-9596
1549-960X
1520-5142
language eng
recordid cdi_proquest_miscellaneous_66743460
source ACS Publications
subjects Binary system
Chemicals
Classification
Computer science
Magnetism
title Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Superparamagnetic%20Clustering%20for%20Unbiased%20Classification%20of%20High-Dimensional%20Chemical%20Data&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Ott,%20Thomas&rft.date=2004-07-01&rft.volume=44&rft.issue=4&rft.spage=1358&rft.epage=1364&rft.pages=1358-1364&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci049905c&rft_dat=%3Cproquest_cross%3E699655671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216242570&rft_id=info:pmid/15272844&rfr_iscdi=true