Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data
For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. I...
Gespeichert in:
Veröffentlicht in: | Journal of Chemical Information and Computer Sciences 2004-07, Vol.44 (4), p.1358-1364 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1364 |
---|---|
container_issue | 4 |
container_start_page | 1358 |
container_title | Journal of Chemical Information and Computer Sciences |
container_volume | 44 |
creator | Ott, Thomas Kern, Albert Schuffenhauer, Ausgar Popov, Maxim Acklin, Pierre Jacoby, Edgar Stoop, Ruedi |
description | For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach. |
doi_str_mv | 10.1021/ci049905c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66743460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>699655671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-d9748a19826d5f82ca1419d79b5f3c09bc18265376be3354b8c3c9e89d93d88b3</originalsourceid><addsrcrecordid>eNpl0EtLJDEQB_AgKzo-DvsFlmbBhT205t3JUcZ1RxAVZkTxEqrT6TFuP8akG_TbG5lBwT0Fqn5Uqv4IfSf4mGBKTqzHXGss7BaaEMF1riW-_4YmGGuRU8bULtqL8QljxrSkO2iXCFpQxfkEubl7Hl03eGiy-bhyYQUBWlh2bvA2mzZjHFzw3TKr-5DddqWH6KpUhxh97S0Mvu-yvs5mfvmYn_nWdTFV0rDpo2tTv8nOYIADtF1DE93h5t1Ht-d_FtNZfnn992J6epkDK-SQV7rgCohWVFaiVtQC4URXhS5FzSzWpSWpJZItHWOCl8oyq53SlWaVUiXbR7_Wc1ehT2fFwbQ-Wtc00Ll-jEbKgjMucYI_v8Cnfgxp72gokZRTUbyj32tkQx9jcLVZBd9CeDUEm_fgzUfwyf7YDBzL1lWfcpN0Avka-JToy0cfwj8jC1YIs7iZm9nd_Iqzxcw8JH-09mDj53L_f_wG5R6ZCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216242570</pqid></control><display><type>article</type><title>Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data</title><source>ACS Publications</source><creator>Ott, Thomas ; Kern, Albert ; Schuffenhauer, Ausgar ; Popov, Maxim ; Acklin, Pierre ; Jacoby, Edgar ; Stoop, Ruedi</creator><creatorcontrib>Ott, Thomas ; Kern, Albert ; Schuffenhauer, Ausgar ; Popov, Maxim ; Acklin, Pierre ; Jacoby, Edgar ; Stoop, Ruedi</creatorcontrib><description>For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach.</description><identifier>ISSN: 0095-2338</identifier><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>EISSN: 1520-5142</identifier><identifier>DOI: 10.1021/ci049905c</identifier><identifier>PMID: 15272844</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binary system ; Chemicals ; Classification ; Computer science ; Magnetism</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2004-07, Vol.44 (4), p.1358-1364</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>Copyright American Chemical Society Jul/Aug 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-d9748a19826d5f82ca1419d79b5f3c09bc18265376be3354b8c3c9e89d93d88b3</citedby><cites>FETCH-LOGICAL-a376t-d9748a19826d5f82ca1419d79b5f3c09bc18265376be3354b8c3c9e89d93d88b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci049905c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci049905c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15272844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ott, Thomas</creatorcontrib><creatorcontrib>Kern, Albert</creatorcontrib><creatorcontrib>Schuffenhauer, Ausgar</creatorcontrib><creatorcontrib>Popov, Maxim</creatorcontrib><creatorcontrib>Acklin, Pierre</creatorcontrib><creatorcontrib>Jacoby, Edgar</creatorcontrib><creatorcontrib>Stoop, Ruedi</creatorcontrib><title>Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach.</description><subject>Binary system</subject><subject>Chemicals</subject><subject>Classification</subject><subject>Computer science</subject><subject>Magnetism</subject><issn>0095-2338</issn><issn>1549-9596</issn><issn>1549-960X</issn><issn>1520-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpl0EtLJDEQB_AgKzo-DvsFlmbBhT205t3JUcZ1RxAVZkTxEqrT6TFuP8akG_TbG5lBwT0Fqn5Uqv4IfSf4mGBKTqzHXGss7BaaEMF1riW-_4YmGGuRU8bULtqL8QljxrSkO2iXCFpQxfkEubl7Hl03eGiy-bhyYQUBWlh2bvA2mzZjHFzw3TKr-5DddqWH6KpUhxh97S0Mvu-yvs5mfvmYn_nWdTFV0rDpo2tTv8nOYIADtF1DE93h5t1Ht-d_FtNZfnn992J6epkDK-SQV7rgCohWVFaiVtQC4URXhS5FzSzWpSWpJZItHWOCl8oyq53SlWaVUiXbR7_Wc1ehT2fFwbQ-Wtc00Ll-jEbKgjMucYI_v8Cnfgxp72gokZRTUbyj32tkQx9jcLVZBd9CeDUEm_fgzUfwyf7YDBzL1lWfcpN0Avka-JToy0cfwj8jC1YIs7iZm9nd_Iqzxcw8JH-09mDj53L_f_wG5R6ZCA</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Ott, Thomas</creator><creator>Kern, Albert</creator><creator>Schuffenhauer, Ausgar</creator><creator>Popov, Maxim</creator><creator>Acklin, Pierre</creator><creator>Jacoby, Edgar</creator><creator>Stoop, Ruedi</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data</title><author>Ott, Thomas ; Kern, Albert ; Schuffenhauer, Ausgar ; Popov, Maxim ; Acklin, Pierre ; Jacoby, Edgar ; Stoop, Ruedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-d9748a19826d5f82ca1419d79b5f3c09bc18265376be3354b8c3c9e89d93d88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Binary system</topic><topic>Chemicals</topic><topic>Classification</topic><topic>Computer science</topic><topic>Magnetism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ott, Thomas</creatorcontrib><creatorcontrib>Kern, Albert</creatorcontrib><creatorcontrib>Schuffenhauer, Ausgar</creatorcontrib><creatorcontrib>Popov, Maxim</creatorcontrib><creatorcontrib>Acklin, Pierre</creatorcontrib><creatorcontrib>Jacoby, Edgar</creatorcontrib><creatorcontrib>Stoop, Ruedi</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ott, Thomas</au><au>Kern, Albert</au><au>Schuffenhauer, Ausgar</au><au>Popov, Maxim</au><au>Acklin, Pierre</au><au>Jacoby, Edgar</au><au>Stoop, Ruedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>44</volume><issue>4</issue><spage>1358</spage><epage>1364</epage><pages>1358-1364</pages><issn>0095-2338</issn><issn>1549-9596</issn><eissn>1549-960X</eissn><eissn>1520-5142</eissn><abstract>For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15272844</pmid><doi>10.1021/ci049905c</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-2338 |
ispartof | Journal of Chemical Information and Computer Sciences, 2004-07, Vol.44 (4), p.1358-1364 |
issn | 0095-2338 1549-9596 1549-960X 1520-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_66743460 |
source | ACS Publications |
subjects | Binary system Chemicals Classification Computer science Magnetism |
title | Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Superparamagnetic%20Clustering%20for%20Unbiased%20Classification%20of%20High-Dimensional%20Chemical%20Data&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Ott,%20Thomas&rft.date=2004-07-01&rft.volume=44&rft.issue=4&rft.spage=1358&rft.epage=1364&rft.pages=1358-1364&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci049905c&rft_dat=%3Cproquest_cross%3E699655671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216242570&rft_id=info:pmid/15272844&rfr_iscdi=true |