Sequential Superparamagnetic Clustering for Unbiased Classification of High-Dimensional Chemical Data

For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Information and Computer Sciences 2004-07, Vol.44 (4), p.1358-1364
Hauptverfasser: Ott, Thomas, Kern, Albert, Schuffenhauer, Ausgar, Popov, Maxim, Acklin, Pierre, Jacoby, Edgar, Stoop, Ruedi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the clustering of chemical structures that are described by the Similog, ISIS count, and ISIS binary fingerprints, we propose a sequential superparamagnetic clustering approach. To appropriately handle nonbinary feature keys, we introduce an extension of the binary Tanimoto similarity measure. In our applications, data sets composed of structures from seven chemically distinct compound classes are evaluated and correctly clustered. The comparison, with results from leading methods, indicates the superiority of our sequential superparamagnetic clustering approach.
ISSN:0095-2338
1549-9596
1549-960X
1520-5142
DOI:10.1021/ci049905c