Fibroblast growth factor 2 (FGF-2) is a novel substrate for arginine methylation by PRMT5

Fibroblast growth factor 2 (FGF-2) is expressed in isoforms of different molecular masses from one mRNA species by alternative start of translation. The higher molecular mass isoforms (FGF-221 and 23) contain an arginine-rich N-terminus organized in RG-motifs followed by the 18 kDa FGF-2 (FGF-218) c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological chemistry 2009-01, Vol.390 (1), p.59-65
Hauptverfasser: Bruns, Alexander-Francisco, Grothe, Claudia, Claus, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibroblast growth factor 2 (FGF-2) is expressed in isoforms of different molecular masses from one mRNA species by alternative start of translation. The higher molecular mass isoforms (FGF-221 and 23) contain an arginine-rich N-terminus organized in RG-motifs followed by the 18 kDa FGF-2 (FGF-218) core which is common to all isoforms. Both isoforms localize differentially to the nucleus. Here, we analyzed the nuclear localization of FGF-221. Surprisingly, the lack of one RG-motif in FGF-221 resulted in the nucleolar distribution characteristic of FGF-218. We have previously shown that 23 kDa FGF-2 (FGF-223) interacts specifically with the survival of motoneuron (SMN) protein, an assembly protein for small nuclear ribonucleoprotein particles. For this assembly, Sm-proteins methylated by protein arginine methyltransferase 5 (PRMT5) are required. In our study, we aimed to analyze whether FGF-223 is also a substrate for symmetrical methylation by PRMT5. We could confirm that both proteins exist in a common complex. Moreover, PRMT5 methylates FGF-223 in vitro, whereas mutated inactive PRMT5 does not. FGF-223 is therefore a new substrate of PRMT5. With regard to function, inhibition of methyltransferase activity in HEK293T cells leads to cytoplasmic enrichment of FGF-2, indicating the importance of arginine methylation for shuttling of FGF-223 to the nucleus.
ISSN:1431-6730
1437-4315
DOI:10.1515/BC.2009.001