Energetics, transition states, and intrinsic reaction coordinates for reactions associated with O(3P) processing of hydrocarbon materials

Electronic structure calculations based on multiconfiguration wave functions are used to investigate a set of archetypal reactions relevant to O(3P) processing of hydrocarbon molecules and surfaces. These include O(3P) reactions with methane and ethane to give OH plus methyl or ethyl radicals, O(3P)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2004-05, Vol.120 (19), p.9253-9265
Hauptverfasser: Yan, Tianying, Hase, William L, Doubleday, Charles
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electronic structure calculations based on multiconfiguration wave functions are used to investigate a set of archetypal reactions relevant to O(3P) processing of hydrocarbon molecules and surfaces. These include O(3P) reactions with methane and ethane to give OH plus methyl or ethyl radicals, O(3P) + ethane to give CH3O + CH3, and secondary reactions of the OH product radical with ethane and the ethyl radical. Geometry optimization is carried out with CASSCF/cc-pVTZ for all reactions, and with CASPT2/cc-pVTZ for O(3P) + methane/ethane. Single-point energy corrections are applied with CASPT2, CASPT3, and MRCI + Q with the cc-pVTZ and cc-pVQZ basis sets, and the energies extrapolated to the complete basis set limit (CBL). Where comparison of computed barriers and energies of reaction with experiment is possible, the agreement is good to excellent. The best agreement (within experimental error) is found for MRCI + Q/CBL applied to O(3P) + methane. For the other reactions, CASPT2/CBL and MRCI + Q/CBL predictions differ from experiment by 1-5 kcal/mol for 0 K enthalpies of reaction, and are within 1 kcal/mol of the best-estimate experimental range of 0 K barriers for O(3P) + ethane and OH + ethane. The accuracy of MRCI + Q/CBL is limited mainly by the quality of the active space. CASPT2/CBL barriers are consistently lower than MRCI + Q/CBL barriers with identical reference spaces.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1705574