Quantum mechanical map for protein-ligand binding with application to beta-trypsin/benzamidine complex
We report full ab initio Hartree-Fock calculation to compute quantum mechanical interaction energies for beta-trypsin/benzamidine binding complex. In this study, the full quantum mechanical ab initio energy calculation for the entire protein complex with 3238 atoms is made possible by using a recent...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2004-01, Vol.120 (3), p.1145-1148 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report full ab initio Hartree-Fock calculation to compute quantum mechanical interaction energies for beta-trypsin/benzamidine binding complex. In this study, the full quantum mechanical ab initio energy calculation for the entire protein complex with 3238 atoms is made possible by using a recently developed MFCC (molecular fractionation with conjugate caps) approach in which the protein molecule is decomposed into amino acid-based fragments that are properly capped. The present MFCC ab initio calculation enables us to obtain an "interaction spectrum" that provides detailed quantitative information on protein-ligand binding at the amino acid levels. These detailed information on individual residue-ligand interaction gives a quantitative molecular insight into our understanding of protein-ligand binding and provides a guidance to rational design of potential inhibitors of protein targets. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1639152 |