Molecular alignment in a liquid induced by a nonresonant laser field: Molecular dynamics simulation
We carried out molecular dynamics (MD) simulations for a dilute aqueous solution of pyrimidine in order to investigate the mechanisms of field-induced molecular alignment in a liquid phase. An anisotopically polarizable molecule can be aligned in a liquid phase by the interaction with a nonresonant...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2004-05, Vol.120 (19), p.9123-9132 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We carried out molecular dynamics (MD) simulations for a dilute aqueous solution of pyrimidine in order to investigate the mechanisms of field-induced molecular alignment in a liquid phase. An anisotopically polarizable molecule can be aligned in a liquid phase by the interaction with a nonresonant intense laser field. We derived the effective forces induced by a nonresonant field on the basis of the concept of the average of the total potential over one optical cycle. The results of MD simulations show that a pyrimidine molecule is aligned in an aqueous solution by a linearly polarized field of light intensity I approximately 10(13) W/cm2 and wavelength lambda = 800 nm. The temporal behavior of field-induced alignment is adequately reproduced by the solution of the Fokker-Planck equation for a model system in which environmental fluctuations are represented by Gaussian white noise. From this analysis, we have revealed that the time required for alignment in a liquid phase is in the order of the reciprocals of rotational diffusion coefficients of a solute molecule. The degree of alignment is determined by the anisotropy of the polarizability of a molecule, light intensity, and temperature. We also discuss differences between the mechanisms of optical alignment in a gas phase and a liquid phase. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1704631 |