Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells
A filter-based microfluidic device was combined with immunofluorescent labeling as a platform to rapidly detect microbial cells. The coin-sized device consisted of micro-chambers, micro-channels and filter weirs (gap = 1-2 microm), and was demonstrated to effectively trap and concentrate microbial c...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2004-01, Vol.4 (4), p.337-341 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A filter-based microfluidic device was combined with immunofluorescent labeling as a platform to rapidly detect microbial cells. The coin-sized device consisted of micro-chambers, micro-channels and filter weirs (gap = 1-2 microm), and was demonstrated to effectively trap and concentrate microbial cells (i.e., Cryptosporidium parvum and Giardia lamblia), which were larger in size than the weir gap. After sample injection, a staining solution containing fluorescently-labeled antibodies was continuously provided into the device (flow rate = 20 microl min(-1)) to flush the microbial cells toward the weirs and to accelerate the fluorescent labeling reaction. Using a staining solution that was 10 to 100 times more dilute than the recommended concentration used in a conventional glass method, those target cells with a fluorescent signal-to-noise ratio of 12 could be microscopically observed at single-cell level within 2 to 5 min prior to secondary washing. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/b401834f |