Strategies for Inhibition of MDR1 Gene Expression
Several distinct strategies have been used to modulate the expression of cancer-associated genes, including antisense oligonucleotides, small interfering RNAs (siRNAs), and artificial transcriptional factors. One major cause for chemotherapeutic treatment failure in cancer is the overexpression of P...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 2004-08, Vol.66 (2), p.268-275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several distinct strategies have been used to modulate the expression of cancer-associated genes, including antisense oligonucleotides, small interfering RNAs (siRNAs), and artificial transcriptional factors. One major cause for chemotherapeutic treatment failure in cancer is the overexpression of P-glycoprotein, the product of the multidrug resistance gene MDR1. In this study, we tested the ability of siRNAs to inhibit MDR1 gene expression. we evaluated the efficiency of chemically synthesized dsRNAs as well as vector-based hairpin siRNAs and investigated the behavior of clones of multidrug-resistant NCI/ADR-RES breast carcinoma cells stably transfected with hairpin siRNA vectors. The effects of siRNA on the MDR phenotype were compared with those elicited by antisense oligonucleotides or by designed transcription factors targeting the MDR1 promoter. These studies suggest that there are several comparably effective strategies for inhibiting MDR1 expression. |
---|---|
ISSN: | 0026-895X 1521-0111 |
DOI: | 10.1124/mol.66.2.268 |