Top-down N-terminal sequencing of Immunoglobulin subunits with electrospray ionization time of flight mass spectrometry

An N-terminal top-down sequencing approach was developed for IgG characterization, using high-resolution HPLC separation and collisionally activated dissociation (CAD) on a single-stage LCT Premier time of flight (TOF) mass spectrometer. Fragmentation of the IgG chains on the LCT Premier was optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical biochemistry 2009, Vol.384 (1), p.42-48
Hauptverfasser: Ren, Da, Pipes, Gary D., Hambly, David, Bondarenko, Pavel V., Treuheit, Michael J., Gadgil, Himanshu S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An N-terminal top-down sequencing approach was developed for IgG characterization, using high-resolution HPLC separation and collisionally activated dissociation (CAD) on a single-stage LCT Premier time of flight (TOF) mass spectrometer. Fragmentation of the IgG chains on the LCT Premier was optimized by varying the ion guide voltage values. Ion guide 1 voltage had the most significant effect on the fragmentation of the IgG chains. An ion guide 1 voltage value of 100 V was found to be optimum for the N-terminal fragmentation of IgG heavy and light chains, which are approximately 50 and 25 kDa, respectively. The most prominent ion series in this CAD experiment was the terminal b-ion series which allows N-terminal sequencing. Using this technique, we were able to confirm the sequence of up to seven N-terminal residues. Applications of this method for the identification of N-terminal pyroglutamic acid formation will be discussed. The method described could be used as a high-throughput method for the rapid N-terminal sequencing of IgG chains and for the detection of chemical modifications in the terminal residues.
ISSN:0003-2697
1096-0309
DOI:10.1016/j.ab.2008.09.026