Lattice density functional theory of molecular diffusion
A density functional theory of diffusion is developed for lattice fluids with molecular flux as a functional of the density distribution. The formalism coincides exactly with the generalized Ono-Kondo density functional theory when there is no gradient of chemical potential, i.e., at equilibrium. Aw...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2004-07, Vol.121 (1), p.426-435 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A density functional theory of diffusion is developed for lattice fluids with molecular flux as a functional of the density distribution. The formalism coincides exactly with the generalized Ono-Kondo density functional theory when there is no gradient of chemical potential, i.e., at equilibrium. Away from equilibrium, it gives Fick's first law in the absence of a potential energy gradient, and it departs from Fickian behavior consistently with the Maxwell-Stefan formulation. The theory is applied to model a nanopore, predicting nonequilibrium phase transitions and the role of surface diffusion in the transport of capillary condensate. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1756131 |