Lattice density functional theory of molecular diffusion

A density functional theory of diffusion is developed for lattice fluids with molecular flux as a functional of the density distribution. The formalism coincides exactly with the generalized Ono-Kondo density functional theory when there is no gradient of chemical potential, i.e., at equilibrium. Aw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2004-07, Vol.121 (1), p.426-435
Hauptverfasser: Matuszak, Daniel, Aranovich, Gregory L, Donohue, Marc D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A density functional theory of diffusion is developed for lattice fluids with molecular flux as a functional of the density distribution. The formalism coincides exactly with the generalized Ono-Kondo density functional theory when there is no gradient of chemical potential, i.e., at equilibrium. Away from equilibrium, it gives Fick's first law in the absence of a potential energy gradient, and it departs from Fickian behavior consistently with the Maxwell-Stefan formulation. The theory is applied to model a nanopore, predicting nonequilibrium phase transitions and the role of surface diffusion in the transport of capillary condensate.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1756131