Assessing Genuine Parents-Offspring Trios for Genetic Association Studies

Objectives: Family-based association tests such as the transmission disequilibrium test (TDT) are dependent on the successful ascertainment of true nuclear family trios. Relationship misspecification inevitably occurs in a proportion of trios collected for genotyping which undetected can lead to a l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human heredity 2009-01, Vol.67 (1), p.26-37
Hauptverfasser: Teo, Yik Y., Fry, Andrew E., Sanjoaquin, Miguel A., Pederson, Bonnie, Small, Kerrin S., Rockett, Kirk A., Kwiatkowski, Dominic P., Clark, Taane G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives: Family-based association tests such as the transmission disequilibrium test (TDT) are dependent on the successful ascertainment of true nuclear family trios. Relationship misspecification inevitably occurs in a proportion of trios collected for genotyping which undetected can lead to a loss of power and increased Type I error due to biases in over-transmission of common alleles. Here, we introduce a method for evaluating the authenticity of nuclear family trios. Methods: Operating in a Bayesian framework, our approach assesses the extent of pedigree inconsistent genotype configurations in the presence of genotyping errors. Unlike other approaches, our method: (i) utilizes information from three individuals collectively (the whole trio) rather than consider two independent pairwise relationships; (ii) down-weighs SNPs with poor performance; (iii) does not require the user to pre-define a rate of genotyping error, which is often unknown to the user and seldom fixed across the different SNPs considered which available methods unrealistically assumed. Results: Simulation studies and comparisons with a real set of data showed that our approach is more likely to correctly identify the presence of true and misspecified trios compared to available software, accurately infers the extent of relationship misspecification in a trio and accurately estimates the genotyping error rates. Conclusions: Assessing relationship misspecification depends on the fidelity of the genotype data used. Available algorithms are not optimised for genotyping technology with varying rates of errors across the markers. Through our comparison studies, our approach is shown to outperform available methods for assessing relationship misspecifications.
ISSN:0001-5652
1423-0062
1423-0062
DOI:10.1159/000164396