Lipase-catalyzed production of a bioactive fatty amide derivative of 7,10-dihydroxy-8( E)-octadecenoic acid

Enzymatic syntheses of fatty amides are of considerable interest due to their wide ranging industrial applications in detergents, shampoo, cosmetics and surfactant formulations. Amidation reaction of Candida antarctica lipase B (CALB) was investigated for direct amidation of carboxylic acid in organ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2009-02, Vol.100 (3), p.1482-1485
Hauptverfasser: Khare, Sunil K., Kumar, Anand, Kuo, Tsung Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzymatic syntheses of fatty amides are of considerable interest due to their wide ranging industrial applications in detergents, shampoo, cosmetics and surfactant formulations. Amidation reaction of Candida antarctica lipase B (CALB) was investigated for direct amidation of carboxylic acid in organic solvent. CALB-mediated production of a novel secondary amide was carried out by reacting the hydroxy oleic acid derivative, 7,10-dihydroxy-8( E)-octadecenoic acid (DOD), with N-methylethanol amine in organic solvent medium. A single, new product peak corresponding to the secondary amide of DOD (D2AM) was detected by high-performance liquid chromatography and thin-layer chromatography. The production of D2AM was achieved in high yields (95%) after 72 h at 50 °C in a CALB-catalyzed reaction that contained 100 IU enzyme activity, 50 mM DOD, and 100 mM N-methylethanol amine in isoamyl alcohol. The new fatty amide D2AM displayed potent antimicrobial activity towards Gram-positive ( Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria ( Proteus vulgaris and Klebsiella pneumonae). D2AM also exhibited antioxidative activity by its α,α-diphenyl-β-picryl-hydrazyl (DPPH) radicals scavenging effects.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2008.08.011