Synchrotron Small-Angle X-ray Scattering Studies of the Structure of Porcine Pepsin under Various pH Conditions

Structural characteristics of various conformational states of porcine pepsin in solution under different pH conditions were investigated in terms of size and shape by small-angle X-ray scattering (SAXS). Low-resolution structural models of porcine pepsin were reconstructed from SAXS data, which wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2008-12, Vol.112 (49), p.15821-15827
Hauptverfasser: Jin, Kyeong Sik, Rho, Yecheol, Kim, Jehan, Kim, Heesoo, Kim, Ik Jung, Ree, Moonhor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural characteristics of various conformational states of porcine pepsin in solution under different pH conditions were investigated in terms of size and shape by small-angle X-ray scattering (SAXS). Low-resolution structural models of porcine pepsin were reconstructed from SAXS data, which were made inside the search volume of maximum dimension (D max), calculated from the pair distance distribution function p(r). The reconstructed structural models were obtained without imposing any restrictions on the symmetry or anisometry of the pepsin molecule. Under conditions emulating those for physiological activity of the enzyme, the reconstructed structural models exhibited a more extended C-terminal domain compared to the crystal structure. The differences between the solution and crystal structures of pepsin can be explained by inherent conformations of the flexible subdomain in the C-terminal domain under the solution pH conditions. Under mild acidic conditions where the enzyme is inactive, the reconstructed structural models revealed a compact globular conformation similar in overall shape to the crystal structure. These results indicate that the changes in fluorescence and circular dichroism curves observed under acidic conditions could also arise from the inherent conformation of the flexible subdomain, which has a tendency to roll into a sphere in the overall structure, but without affecting the stability of internal structure. Furthermore, the conformational changes in the subdomain might explain the inactivity of pepsin under mildly acidic conditions. Finally, compared to neutral denaturing conditions, pepsin under alkaline denaturing conditions had a larger expanded vertical conformation in the reconstructed model, as a consequence of alkaline denaturation of the N-terminal domain and a fully extended conformation of the C-terminal domain. The structural evidence presented here may have important implications for understanding the relationship between the structure of porcine pepsin and enzymatic function.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp805940d