9,10-Anthracene dicarboxylate bridged complexes with M2 quadruply bonded dimetal units: [[M2(O2CtBu)3]2(mu-9,10-An(CO2)2)], where M = Mo or W
From the reactions between [M2(O2CtBu)4] and 9,10-anthracenedicarboxylic acid in toluene, the dicarboxylate bridged complexes [[M2(O2CtBu)3]2(mu-9,10An(CO2)2)], have been obtained as microcrystalline yellow (M = Mo) and red (M = W) powders. The powders are soluble in THF forming intense red (M = Mo)...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2004-02 (4), p.523-529 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | From the reactions between [M2(O2CtBu)4] and 9,10-anthracenedicarboxylic acid in toluene, the dicarboxylate bridged complexes [[M2(O2CtBu)3]2(mu-9,10An(CO2)2)], have been obtained as microcrystalline yellow (M = Mo) and red (M = W) powders. The powders are soluble in THF forming intense red (M = Mo) and green (M = W) solutions. The electronic absorption spectra in 2-MeTHF have been recorded as a function of temperature (2-298 K) and show a small bathochromic shift on cooling. The electronic structures have been investigated by molecular orbital calculations employing density functional theory on the model compounds [(HCO2)3M2]2(mu-9,10-An(CO2)2) where the M4 unit is constrained to lie in a plane. These reveal a minimum energy, gas-phase structure wherein the plane of the anthracene is twisted by ca. 54 degrees with respect to its 9,10-carboxylate units for both Mo and W. The results of these calculations are correlated with the electronic absorption spectral data and the electrochemical measurements (CV and DPV) of the first and second oxidation waves. The EPR spectra of the radical cations formed by single-electron oxidation with [Cp2Fe](+)[PF6]- in a THF-CH2Cl2 solvent mixture show that the complexes are valence trapped at ambient temperature on the EPR timescale. These results are discussed in the light of recent studies of dicarboxylate-linked MM quadruple bonds. |
---|---|
ISSN: | 1477-9226 |