Population dynamics with global regulation: The conserved Fisher equation
We introduce and study a conserved version of the Fisher equation. Within a population biology context, this model describes spatially extended populations in which the total number of individuals is fixed due to either biotic or environmental factors. We find a rich spectrum of dynamical phases inc...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2004-06, Vol.92 (22), p.228103.1-228103.4, Article 228103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce and study a conserved version of the Fisher equation. Within a population biology context, this model describes spatially extended populations in which the total number of individuals is fixed due to either biotic or environmental factors. We find a rich spectrum of dynamical phases including a pseudotraveling wave and, in the presence of the Allee effect, a phase transition from a locally constrained high density state to a low density fragmented state. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.92.228103 |