Effects of limb exercise after spinal cord injury on motor neuron dendrite structure

An integration center subserving locomotor leg movements resides in the upper lumbar spinal cord. If this neuronal network is preserved after a spinal cord injury, it is possible to stimulate this circuitry to initiate and promote walking. The several effective approaches (electrical stimulation, ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2004-08, Vol.476 (2), p.130-145
Hauptverfasser: Gazula, Valeswara-Rao, Roberts, Melinda, Luzzio, Christopher, Jawad, Abbas F., Kalb, Robert Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An integration center subserving locomotor leg movements resides in the upper lumbar spinal cord. If this neuronal network is preserved after a spinal cord injury, it is possible to stimulate this circuitry to initiate and promote walking. The several effective approaches (electrical stimulation, pharmacologic agents, physical therapy training programs) may all share a common modus operandi of altering synaptic activity within segmental spinal cord. To understand the neural substrate for the use‐dependent behavioral improvement, we studied the dendritic architecture of spinal motor neurons. In the first experiment, we compared three groups of animals: animals with an intact spinal cord, animals that had a complete spinal cord transection (SCT) and animals with SCT who engaged in a daily exercise program of actively moving paralyzed hindlimbs through the motions of walking. When compared with animals with an intact spinal cord, the motor neurons from animals with SCT displayed marked atrophy, with loss of dendritic membrane and elimination of branching throughout the visible tree within transverse tissue slices. None of these regressive changes were found in the motor neurons from SCT animals that underwent exercise. In a second experiment, we inquired whether exercise of animals with an intact spinal cord influenced dendrite structure. Increased exercise had very modest effects on dendrite morphology, indicating an upper limit of use‐dependent dendrite growth. Our findings suggest that the dendritic tree of motor neurons deprived of descending influences is rapidly pruned, and this finding is not observed in motor neurons after SCT if hindlimbs are exercised. The functional benefits of exercise after SCT injury may be subserved, in part, by stabilizing or remodeling the dendritic tree of motor neurons below the injury site. J. Comp. Neurol. 476:130–145, 2004. © 2004 Wiley‐Liss, Inc.
ISSN:0021-9967
1096-9861
DOI:10.1002/cne.20204