Universal spectral statistics in Wigner-Dyson, chiral, and Andreev star graphs. I. Construction and numerical results

In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate ensembles of star graphs in the ten symmetry classes. A generalization of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-05, Vol.69 (5 Pt 2), p.056219-056219, Article 056219
Hauptverfasser: Gnutzmann, Sven, Seif, Burkhard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate ensembles of star graphs in the ten symmetry classes. A generalization of the Bohigas-Giannoni-Schmit conjecture is given that covers all these symmetry classes. The conjecture is supported by numerical results that demonstrate the fidelity of the spectral statistics of star graphs to the corresponding Gaussian random-matrix theories.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.69.056219