Universal spectral statistics in Wigner-Dyson, chiral, and Andreev star graphs. I. Construction and numerical results
In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate ensembles of star graphs in the ten symmetry classes. A generalization of the...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-05, Vol.69 (5 Pt 2), p.056219-056219, Article 056219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate ensembles of star graphs in the ten symmetry classes. A generalization of the Bohigas-Giannoni-Schmit conjecture is given that covers all these symmetry classes. The conjecture is supported by numerical results that demonstrate the fidelity of the spectral statistics of star graphs to the corresponding Gaussian random-matrix theories. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.69.056219 |