Anti-crosslinking properties of carnosine: Significance of histidine
Carnosine, a histidine-containing dipeptide, is a potential treatment for Alzheimer's disease. There is evidence that carnosine prevents oxidation and glycation, both of which contribute to the crosslinking of proteins; and protein crosslinking promotes β-amyloid plaque formation. It was previo...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 2004-07, Vol.75 (11), p.1379-1389 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carnosine, a histidine-containing dipeptide, is a potential treatment for Alzheimer's disease. There is evidence that carnosine prevents oxidation and glycation, both of which contribute to the crosslinking of proteins; and protein crosslinking promotes β-amyloid plaque formation. It was previously shown that carnosine has anti-crosslinking activity, but it is not known which of the chemical constituents are responsible. We tested the individual amino acids in carnosine (β-alanine, histidine) as well as modified forms of histidine (α-acetyl-histidine, 1-methyl-histidine) and methylated carnosine (anserine) using glycation-induced crosslinking of cytosolic aspartate aminotransferase as our model. β-Alanine showed anti-crosslinking activity but less than that of carnosine, suggesting that the β-amino group is required in preventing protein crosslinking. Interestingly, histidine, which has both α-amino and imidazolium groups, was more effective than carnosine. Acetylation of histidine's α-amino group or methylation of its imidazolium group abolished anti-crosslinking activity. Furthermore, methylation of carnosine's imidazolium group decreased its anti-crosslinking activity. The results suggest that histidine is the representative structure for an anti-crosslinking agent, containing the necessary functional groups for optimal protection against crosslinking agents. We propose that the imidazolium group of histidine or carnosine may stabilize adducts formed at the primary amino group. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2004.05.002 |