Effects of exposure to a simulated altitude of 5500 m on energy metabolic pathways in rats

We examined the effect of exposure to 5500 m on three closely related metabolic pathways: anaerobic glycolysis, the pentose phosphate shunt (PPS), and fatty acid metabolism. Rats were exposed to simulated altitude of 5500 m for up to 3 months. The maximal rate of lactate production in tissue homogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory physiology & neurobiology 2004-07, Vol.141 (1), p.59-71
Hauptverfasser: Ou, L.C, Leiter, J.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examined the effect of exposure to 5500 m on three closely related metabolic pathways: anaerobic glycolysis, the pentose phosphate shunt (PPS), and fatty acid metabolism. Rats were exposed to simulated altitude of 5500 m for up to 3 months. The maximal rate of lactate production in tissue homogenates, tissue lactic acid dehydrogenase and blood lactate levels were measured to evaluate the capacity for anaerobic glycolysis. The uptake of 14 C -1-palmitate, oxidation of 14 C -1-palimate to 14 CO 2 , incorporation of 14 C -1-palmitate into tissue lipids, plasma and tissue free fatty acids (FFA) levels and total lipid contents were measured to assess the magnitude of lipid metabolism. Activities of glucose-6-phosphate dehydrogenase (G-6-PD) and 6-phophogluconate dehydrogenase (6-PGD) in the PPS pathway were measured to assess the capacity to generate reducing power. Acute and chronic hypoxia did not affect most of the measurements of anaerobic glycolysis, but depressed lactate production in liver and kidney. Chronic hypoxia enhanced all aspects of lipid metabolism in liver and enhanced the uptake and oxidation to CO 2 of palmitate in skeletal muscle. Chronic hypoxia did not alter the activity of the G-6-PD in any tissue studied, but the activity of 6-PGD was depressed in heart, kidney, thymus and adrenal gland. The lack of major changes in the capacities of anaerobic glycolytic pathways and the activities of the PPS dehydrogenases is consistent with the maintenance of normal aerobic metabolism in rats at 5500 m. We found no evidence that anaerobic metabolic processes were upregulated to sustain energy consumption during chronic hypoxia. On the other hand, enhanced fatty acid metabolism may spare carbohydrate for metabolic fuel under conditions of extreme hypoxic limitation.
ISSN:1569-9048
1878-1519
DOI:10.1016/j.resp.2004.04.001