Hemoglobin-Mediated Oxidation of Washed Minced Cod Muscle Phospholipids:  Effect of pH and Hemoglobin Source

Lipid pro-oxidative properties and deoxygenation/autoxidation patterns of hemoglobins from nonmigratory white-fleshed fish (winter flounder and Atlantic pollock) and migratory dark-fleshed fish (Atlantic mackerel and menhaden) were compared during ice storage at pH 7.2 and 6. A washed cod mince mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2004-07, Vol.52 (14), p.4444-4451
Hauptverfasser: Undeland, Ingrid, Kristinsson, Hordur G, Hultin, Herbert O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipid pro-oxidative properties and deoxygenation/autoxidation patterns of hemoglobins from nonmigratory white-fleshed fish (winter flounder and Atlantic pollock) and migratory dark-fleshed fish (Atlantic mackerel and menhaden) were compared during ice storage at pH 7.2 and 6. A washed cod mince model system and a buffer model system were used for studying lipid changes and hemoglobin changes, respectively. TBARS and painty odor were followed as markers for lipid oxidation. At pH 6, all four hemoglobins were highly and equally active as pro-oxidants. At pH 7.2, pro-oxidation by all hemoglobins except that from pollock was slowed down, and activity ranked as pollock > mackerel > menhaden > flounder. The higher catalytic activities of the hemoglobins at pH 6 than at pH 7.2 corresponded with higher formation of deoxyhemoglobin and methemoglobin. Pollock had the most extensive formation of deoxy- and methemoglobin at both pH values, which could explain its high catalytic activity. The pro-oxidative differences among the other hemoglobins at pH 7.2 did not correlate with deoxygenation and autoxidation reactions. This indicates involvement of other structural differences between the hemoglobins such as differences in the heme-crevice volume. It is suggested that a biological reason for the species differences was their adaptations to different depths/water temperatures. Keywords: Hemoglobin; pH effects on hemoglobin; oxidation; cod; pollock; flounder; menhaden; mackerel
ISSN:0021-8561
1520-5118
DOI:10.1021/jf030560s