High-resolution NMR spectroscopic trends and assignment rules of metal-free, metallated and substituted corroles
Major advances over the last few years have facilitated the synthesis of a large variety of meso‐only substituted corroles that display interesting catalytic, therapeutic and photophysical properties. This work is the first to study extensively the NMR spectral characteristics of both metallated and...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in chemistry 2004-07, Vol.42 (7), p.624-635 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Major advances over the last few years have facilitated the synthesis of a large variety of meso‐only substituted corroles that display interesting catalytic, therapeutic and photophysical properties. This work is the first to study extensively the NMR spectral characteristics of both metallated and non‐metallated triarylcorroles in various organic solvents and provide guidelines for easy and reliable assignments of 1D 1H spectra from trends of J coupling constants and chemical shifts. An excellent correlation is found between CC bond lengths derived from 3J(H,H) values and experimental lengths determined by x‐ray crystallography of the same molecules. The nuclear Overhauser effect provides a robust 1D 1H NMR tool for determining the selectivity of electrophilic substitutions. Variable‐temperature NMR and isotopic labelling reveal a single preferred tautomerization state and unsymmetric ring orientations at −70°C. The β‐pyrrole protons demonstrate long‐range heteronuclear couplings with the coordination core (15N) and with the ortho‐19F nuclei of the meso‐carbon aryl rings. In sum, application of multinuclear magnetic resonance to corroles and their metal complexes, through the compilation of chemical shifts and J couplings and the recognition of trends therein, provides basic information essential to reliable spectral assignments. Additionally, the conclusions drawn about the structures of corroles and the electron densities at various positions of the corrole macrocycle resulting from the application of high‐resolution NMR techniques are of importance to an in‐depth understanding of the molecular interactions and processes of this relatively new and rapidly expanding class of compounds. Copyright © 2004 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0749-1581 1097-458X |
DOI: | 10.1002/mrc.1389 |