A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments

Motivation: The constituent amino acids of a protein work together to define its structure and to facilitate its function. Their interdependence should be apparent in the evolutionary record of each protein family: positions in the sequence of a protein family that are intimately associated in space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2004-07, Vol.20 (10), p.1565-1572
Hauptverfasser: Dekker, John P., Fodor, Anthony, Aldrich, Richard W., Yellen, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: The constituent amino acids of a protein work together to define its structure and to facilitate its function. Their interdependence should be apparent in the evolutionary record of each protein family: positions in the sequence of a protein family that are intimately associated in space or in function should co-vary in evolution. A recent approach by Ranganathan and colleagues proposes to look at subsets of a protein family, selected for their sequence at one position, to see how this affects variation at other positions. Results: We present a quantitative algorithm for assessing covariation with this approach, based on explicit likelihood calculations. By applying our algorithm to 138 Pfam families with at least one member of known structure, we demonstrate that our method has improved power in finding physically close residues in crystal structures, compared to that of Ranganathan and colleagues. Supplementary information: www.afodor.net/bioinfosup.html
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/bth128