Receptive field organization of electrosensory neurons in the paddlefish ( Polyodon spathula)

Paddlefish use their electrosense to locate small water fleas (daphnia), their primary prey, in three-dimensional space. High sensitivity and a representation of object location are essential for this task. High sensitivity can be achieved by convergence of information from a large number of recepto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physiology, Paris Paris, 2008-07, Vol.102 (4), p.246-255
Hauptverfasser: Chagnaud, B.P., Wilkens, L.A., Hofmann, M.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Paddlefish use their electrosense to locate small water fleas (daphnia), their primary prey, in three-dimensional space. High sensitivity and a representation of object location are essential for this task. High sensitivity can be achieved by convergence of information from a large number of receptors and object location is usually represented in the nervous system by topographic maps. However the first electrosensory center in the brain, the dorsal octavolateral nucleus in the hindbrain, is neither topographically organized nor does it show a higher sensitivity than primary afferent fibers. Here, we investigated the response properties of electrosensory neurons in the dorsal octavolateral nucleus (DON), the lateral mesencephalic nucleus (LMN) and the tectum mesencephali (TM). LMN units are characterized by large receptive fields, which suggest a high degree of convergence. TM units have small receptive fields and are topographically arranged, at least in the rostro-caudal axis, the only dimension we could test. Well-defined receptive fields, however, could only be detected in the TM with a moving DC stimulus. The receptive fields of TM units, as determined by slowly scanning the rostrum and head with a 5 Hz stimulus, were very large and frequently two or more receptive fields were present. The receptive fields for LMN units were located in the anterior half of the rostrum whereas TM units had receptive fields predominantly on the head and at the base of the rostrum. A detailed analysis of the prey catching behavior revealed that it consists of two phases that coincide with the location of the receptive fields in LMN and TM, respectively. This suggests that LMN units are responsible for the initial orienting response that occurs when the prey is alongside the anterior first half of the rostrum. TM units, in contrast, had receptive fields at locations where the prey is located when the fish opens its mouth and attempts the final strike.
ISSN:0928-4257
1769-7115
DOI:10.1016/j.jphysparis.2008.10.006