Ventilation imaging of the lung: comparison of hyperpolarized helium-3 MR imaging with Xe-133 scintigraphy

To compare hyperpolarized helium-3 (HHe) magnetic resonance imaging (MRI) of the lung with standard Xe-133 lung ventilation scintigraphy. We performed a retrospective review of 15 subjects who underwent HHe MRI and Xe-133 lung ventilation imaging. Coronal MRI sections were acquired after a single in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2004-07, Vol.11 (7), p.729-734
Hauptverfasser: Altes, Talissa A, Rehm, Patrice K, Harrell, Frank, Salerno, Michael, Daniel, Thomas M, De Lange, Eduard E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To compare hyperpolarized helium-3 (HHe) magnetic resonance imaging (MRI) of the lung with standard Xe-133 lung ventilation scintigraphy. We performed a retrospective review of 15 subjects who underwent HHe MRI and Xe-133 lung ventilation imaging. Coronal MRI sections were acquired after a single inhalation of HHe gas, and standard posterior planar lung ventilation scintigraphy was performed during continuous breathing of Xe-133 gas. The first breath scintigram of each patient was compared with a composite MR image composed of the sum of the individual MR images and with the individual helium-3 MR images. Ventilation defects on the two imaging modalities were compared for size, conspicuity, and concordance in presence and location. Assessment was done separately for each of four lung quadrants. Comparing the composite HHe MR images with Xe-133 scintigraphy, ventilation defect size, conspicuity and concordance were the same in 67% (40/60), 63% (38/60), and 62% (37/60) quadrants, respectively. Comparing the individual HHe MR image sections with the Xe-133 ventilation scan, there was concordance between the ventilation defects in 27% (16/60) of quadrants. More defects were identified on the individual HHe MR images in 62% (37/60) of quadrants. There was good agreement between composite HHe MR image and first breath Xe-133 scintigraphic images, supporting the widely held assumption that HHe MRI likely depicts first breath lung ventilation.
ISSN:1076-6332
DOI:10.1016/j.acra.2004.04.001