An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles

To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods. Atomic force microscopy (AFM) force measurements were performed as a function of humidity (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 2004-06, Vol.21 (6), p.953-961
Hauptverfasser: Hooton, Jennifer C, German, Caroline S, Allen, Stephanie, Davies, Martyn C, Roberts, Clive J, Tendler, Saul J B, Williams, Philip M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 6
container_start_page 953
container_title Pharmaceutical research
container_volume 21
creator Hooton, Jennifer C
German, Caroline S
Allen, Stephanie
Davies, Martyn C
Roberts, Clive J
Tendler, Saul J B
Williams, Philip M
description To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods. Atomic force microscopy (AFM) force measurements were performed as a function of humidity (
doi_str_mv 10.1023/B:PHAM.0000029283.47643.9c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66646396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66646396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-50a2dd764bf71437c8053d319dfed6de87bc8e274d462820cda236ba2ca238de3</originalsourceid><addsrcrecordid>eNpdkctu3CAUhlHVqJmkfYUKZZGdJ9wMdnaTKDcpUbtope4QA4eOI9s4gBfzEnnm4mSkSGVzLvrOz4EfoTNK1pQwfnF1-fN-87Qmy2Eta_haKCn4urWf0IrWilctEX8-oxVRTFSNEvQYnaT0XPCGtuILOqY1o4zW7Qq9bkZschg6i32IFnDJYkg2THuc8uz2OHicd4DBe7B5qUYzFsD0gG0YsynNvxAGyHGPzehwmqM3RcjuYOjS0g3jm4JxO0hdKYrGtDNxKNScu6KEJxNL0kP6io686RN8O8RT9Pv25tf1ffX44-7hevNYWS5YrmpimHPl0VuvqODKNqTmjtPWeXDSQaO2tgGmhBOSNYxYZxiXW8NsiY0DforO33WnGF5mSFmXXS30vRkhzElLKYXkrSzg2X_gc5jjWHbTjDEpiVKqQJfv0PJ1KYLXU-wGE_eaEr1Ypq_0Ypn-sEy_WaZbW4a_H26YtwO4j9GDR_wfWNSV9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222660777</pqid></control><display><type>article</type><title>An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hooton, Jennifer C ; German, Caroline S ; Allen, Stephanie ; Davies, Martyn C ; Roberts, Clive J ; Tendler, Saul J B ; Williams, Philip M</creator><creatorcontrib>Hooton, Jennifer C ; German, Caroline S ; Allen, Stephanie ; Davies, Martyn C ; Roberts, Clive J ; Tendler, Saul J B ; Williams, Philip M</creatorcontrib><description>To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods. Atomic force microscopy (AFM) force measurements were performed as a function of humidity (&lt;10% to 65% RH) using two systems. The first system used clean AFM tips against compressed disks of micronized and solution enhanced dispersion by supercritical fluid (SEDS) salbutamol. The second system involved particles of both salbutamol samples mounted onto the apexes of AFM cantilevers, and force measurements being performed against a highly orientated pyrolytic graphite (HOPG) substrate. Following these measurements, the contact asperities of the tips were characterized. The first system showed a maximum in the observed adhesion at 22% relative humidity (RH) for the SEDS salbutamol compared to 44% RH for the micronized salbutamol. The second system showed a mix of peaks and continual increases in adhesion with humidity. The predicted Johnson-Kendall-Roberts forces were calculated and divided by the actual forces in order to produce a ratio. By relating the nature of the asperities to the force measurements, we propose a model in which adhesion scenarios range from single asperity nanometer-scale contact in which peaks in the adhesion were observed, to multiasperity contact where a continuous increase in adhesion was seen with humidity.</description><identifier>ISSN: 0724-8741</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1023/B:PHAM.0000029283.47643.9c</identifier><identifier>PMID: 15212159</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Adhesiveness ; Albuterol - chemistry ; Algorithms ; Chemistry, Pharmaceutical - methods ; Chromatography, Supercritical Fluid - methods ; Friction ; Graphite - chemistry ; Humidity ; Microscopy, Atomic Force - instrumentation ; Microscopy, Atomic Force - methods ; Nanotechnology - methods ; Particle Size ; Powders - chemistry ; Solubility ; Technology, Pharmaceutical - methods</subject><ispartof>Pharmaceutical research, 2004-06, Vol.21 (6), p.953-961</ispartof><rights>Copyright Kluwer Academic Publishers Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-50a2dd764bf71437c8053d319dfed6de87bc8e274d462820cda236ba2ca238de3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15212159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hooton, Jennifer C</creatorcontrib><creatorcontrib>German, Caroline S</creatorcontrib><creatorcontrib>Allen, Stephanie</creatorcontrib><creatorcontrib>Davies, Martyn C</creatorcontrib><creatorcontrib>Roberts, Clive J</creatorcontrib><creatorcontrib>Tendler, Saul J B</creatorcontrib><creatorcontrib>Williams, Philip M</creatorcontrib><title>An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><description>To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods. Atomic force microscopy (AFM) force measurements were performed as a function of humidity (&lt;10% to 65% RH) using two systems. The first system used clean AFM tips against compressed disks of micronized and solution enhanced dispersion by supercritical fluid (SEDS) salbutamol. The second system involved particles of both salbutamol samples mounted onto the apexes of AFM cantilevers, and force measurements being performed against a highly orientated pyrolytic graphite (HOPG) substrate. Following these measurements, the contact asperities of the tips were characterized. The first system showed a maximum in the observed adhesion at 22% relative humidity (RH) for the SEDS salbutamol compared to 44% RH for the micronized salbutamol. The second system showed a mix of peaks and continual increases in adhesion with humidity. The predicted Johnson-Kendall-Roberts forces were calculated and divided by the actual forces in order to produce a ratio. By relating the nature of the asperities to the force measurements, we propose a model in which adhesion scenarios range from single asperity nanometer-scale contact in which peaks in the adhesion were observed, to multiasperity contact where a continuous increase in adhesion was seen with humidity.</description><subject>Adhesiveness</subject><subject>Albuterol - chemistry</subject><subject>Algorithms</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Chromatography, Supercritical Fluid - methods</subject><subject>Friction</subject><subject>Graphite - chemistry</subject><subject>Humidity</subject><subject>Microscopy, Atomic Force - instrumentation</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Powders - chemistry</subject><subject>Solubility</subject><subject>Technology, Pharmaceutical - methods</subject><issn>0724-8741</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkctu3CAUhlHVqJmkfYUKZZGdJ9wMdnaTKDcpUbtope4QA4eOI9s4gBfzEnnm4mSkSGVzLvrOz4EfoTNK1pQwfnF1-fN-87Qmy2Eta_haKCn4urWf0IrWilctEX8-oxVRTFSNEvQYnaT0XPCGtuILOqY1o4zW7Qq9bkZschg6i32IFnDJYkg2THuc8uz2OHicd4DBe7B5qUYzFsD0gG0YsynNvxAGyHGPzehwmqM3RcjuYOjS0g3jm4JxO0hdKYrGtDNxKNScu6KEJxNL0kP6io686RN8O8RT9Pv25tf1ffX44-7hevNYWS5YrmpimHPl0VuvqODKNqTmjtPWeXDSQaO2tgGmhBOSNYxYZxiXW8NsiY0DforO33WnGF5mSFmXXS30vRkhzElLKYXkrSzg2X_gc5jjWHbTjDEpiVKqQJfv0PJ1KYLXU-wGE_eaEr1Ypq_0Ypn-sEy_WaZbW4a_H26YtwO4j9GDR_wfWNSV9g</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Hooton, Jennifer C</creator><creator>German, Caroline S</creator><creator>Allen, Stephanie</creator><creator>Davies, Martyn C</creator><creator>Roberts, Clive J</creator><creator>Tendler, Saul J B</creator><creator>Williams, Philip M</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>200406</creationdate><title>An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles</title><author>Hooton, Jennifer C ; German, Caroline S ; Allen, Stephanie ; Davies, Martyn C ; Roberts, Clive J ; Tendler, Saul J B ; Williams, Philip M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-50a2dd764bf71437c8053d319dfed6de87bc8e274d462820cda236ba2ca238de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adhesiveness</topic><topic>Albuterol - chemistry</topic><topic>Algorithms</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Chromatography, Supercritical Fluid - methods</topic><topic>Friction</topic><topic>Graphite - chemistry</topic><topic>Humidity</topic><topic>Microscopy, Atomic Force - instrumentation</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Powders - chemistry</topic><topic>Solubility</topic><topic>Technology, Pharmaceutical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooton, Jennifer C</creatorcontrib><creatorcontrib>German, Caroline S</creatorcontrib><creatorcontrib>Allen, Stephanie</creatorcontrib><creatorcontrib>Davies, Martyn C</creatorcontrib><creatorcontrib>Roberts, Clive J</creatorcontrib><creatorcontrib>Tendler, Saul J B</creatorcontrib><creatorcontrib>Williams, Philip M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooton, Jennifer C</au><au>German, Caroline S</au><au>Allen, Stephanie</au><au>Davies, Martyn C</au><au>Roberts, Clive J</au><au>Tendler, Saul J B</au><au>Williams, Philip M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles</atitle><jtitle>Pharmaceutical research</jtitle><addtitle>Pharm Res</addtitle><date>2004-06</date><risdate>2004</risdate><volume>21</volume><issue>6</issue><spage>953</spage><epage>961</epage><pages>953-961</pages><issn>0724-8741</issn><eissn>1573-904X</eissn><abstract>To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods. Atomic force microscopy (AFM) force measurements were performed as a function of humidity (&lt;10% to 65% RH) using two systems. The first system used clean AFM tips against compressed disks of micronized and solution enhanced dispersion by supercritical fluid (SEDS) salbutamol. The second system involved particles of both salbutamol samples mounted onto the apexes of AFM cantilevers, and force measurements being performed against a highly orientated pyrolytic graphite (HOPG) substrate. Following these measurements, the contact asperities of the tips were characterized. The first system showed a maximum in the observed adhesion at 22% relative humidity (RH) for the SEDS salbutamol compared to 44% RH for the micronized salbutamol. The second system showed a mix of peaks and continual increases in adhesion with humidity. The predicted Johnson-Kendall-Roberts forces were calculated and divided by the actual forces in order to produce a ratio. By relating the nature of the asperities to the force measurements, we propose a model in which adhesion scenarios range from single asperity nanometer-scale contact in which peaks in the adhesion were observed, to multiasperity contact where a continuous increase in adhesion was seen with humidity.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>15212159</pmid><doi>10.1023/B:PHAM.0000029283.47643.9c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0724-8741
ispartof Pharmaceutical research, 2004-06, Vol.21 (6), p.953-961
issn 0724-8741
1573-904X
language eng
recordid cdi_proquest_miscellaneous_66646396
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adhesiveness
Albuterol - chemistry
Algorithms
Chemistry, Pharmaceutical - methods
Chromatography, Supercritical Fluid - methods
Friction
Graphite - chemistry
Humidity
Microscopy, Atomic Force - instrumentation
Microscopy, Atomic Force - methods
Nanotechnology - methods
Particle Size
Powders - chemistry
Solubility
Technology, Pharmaceutical - methods
title An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20atomic%20force%20microscopy%20study%20of%20the%20effect%20of%20nanoscale%20contact%20geometry%20and%20surface%20chemistry%20on%20the%20adhesion%20of%20pharmaceutical%20particles&rft.jtitle=Pharmaceutical%20research&rft.au=Hooton,%20Jennifer%20C&rft.date=2004-06&rft.volume=21&rft.issue=6&rft.spage=953&rft.epage=961&rft.pages=953-961&rft.issn=0724-8741&rft.eissn=1573-904X&rft_id=info:doi/10.1023/B:PHAM.0000029283.47643.9c&rft_dat=%3Cproquest_cross%3E66646396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222660777&rft_id=info:pmid/15212159&rfr_iscdi=true