An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles
To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods. Atomic force microscopy (AFM) force measurements were performed as a function of humidity (
Gespeichert in:
Veröffentlicht in: | Pharmaceutical research 2004-06, Vol.21 (6), p.953-961 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 961 |
---|---|
container_issue | 6 |
container_start_page | 953 |
container_title | Pharmaceutical research |
container_volume | 21 |
creator | Hooton, Jennifer C German, Caroline S Allen, Stephanie Davies, Martyn C Roberts, Clive J Tendler, Saul J B Williams, Philip M |
description | To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods.
Atomic force microscopy (AFM) force measurements were performed as a function of humidity ( |
doi_str_mv | 10.1023/B:PHAM.0000029283.47643.9c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66646396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66646396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-50a2dd764bf71437c8053d319dfed6de87bc8e274d462820cda236ba2ca238de3</originalsourceid><addsrcrecordid>eNpdkctu3CAUhlHVqJmkfYUKZZGdJ9wMdnaTKDcpUbtope4QA4eOI9s4gBfzEnnm4mSkSGVzLvrOz4EfoTNK1pQwfnF1-fN-87Qmy2Eta_haKCn4urWf0IrWilctEX8-oxVRTFSNEvQYnaT0XPCGtuILOqY1o4zW7Qq9bkZschg6i32IFnDJYkg2THuc8uz2OHicd4DBe7B5qUYzFsD0gG0YsynNvxAGyHGPzehwmqM3RcjuYOjS0g3jm4JxO0hdKYrGtDNxKNScu6KEJxNL0kP6io686RN8O8RT9Pv25tf1ffX44-7hevNYWS5YrmpimHPl0VuvqODKNqTmjtPWeXDSQaO2tgGmhBOSNYxYZxiXW8NsiY0DforO33WnGF5mSFmXXS30vRkhzElLKYXkrSzg2X_gc5jjWHbTjDEpiVKqQJfv0PJ1KYLXU-wGE_eaEr1Ypq_0Ypn-sEy_WaZbW4a_H26YtwO4j9GDR_wfWNSV9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222660777</pqid></control><display><type>article</type><title>An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hooton, Jennifer C ; German, Caroline S ; Allen, Stephanie ; Davies, Martyn C ; Roberts, Clive J ; Tendler, Saul J B ; Williams, Philip M</creator><creatorcontrib>Hooton, Jennifer C ; German, Caroline S ; Allen, Stephanie ; Davies, Martyn C ; Roberts, Clive J ; Tendler, Saul J B ; Williams, Philip M</creatorcontrib><description>To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods.
Atomic force microscopy (AFM) force measurements were performed as a function of humidity (<10% to 65% RH) using two systems. The first system used clean AFM tips against compressed disks of micronized and solution enhanced dispersion by supercritical fluid (SEDS) salbutamol. The second system involved particles of both salbutamol samples mounted onto the apexes of AFM cantilevers, and force measurements being performed against a highly orientated pyrolytic graphite (HOPG) substrate. Following these measurements, the contact asperities of the tips were characterized.
The first system showed a maximum in the observed adhesion at 22% relative humidity (RH) for the SEDS salbutamol compared to 44% RH for the micronized salbutamol. The second system showed a mix of peaks and continual increases in adhesion with humidity. The predicted Johnson-Kendall-Roberts forces were calculated and divided by the actual forces in order to produce a ratio.
By relating the nature of the asperities to the force measurements, we propose a model in which adhesion scenarios range from single asperity nanometer-scale contact in which peaks in the adhesion were observed, to multiasperity contact where a continuous increase in adhesion was seen with humidity.</description><identifier>ISSN: 0724-8741</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1023/B:PHAM.0000029283.47643.9c</identifier><identifier>PMID: 15212159</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Adhesiveness ; Albuterol - chemistry ; Algorithms ; Chemistry, Pharmaceutical - methods ; Chromatography, Supercritical Fluid - methods ; Friction ; Graphite - chemistry ; Humidity ; Microscopy, Atomic Force - instrumentation ; Microscopy, Atomic Force - methods ; Nanotechnology - methods ; Particle Size ; Powders - chemistry ; Solubility ; Technology, Pharmaceutical - methods</subject><ispartof>Pharmaceutical research, 2004-06, Vol.21 (6), p.953-961</ispartof><rights>Copyright Kluwer Academic Publishers Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-50a2dd764bf71437c8053d319dfed6de87bc8e274d462820cda236ba2ca238de3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15212159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hooton, Jennifer C</creatorcontrib><creatorcontrib>German, Caroline S</creatorcontrib><creatorcontrib>Allen, Stephanie</creatorcontrib><creatorcontrib>Davies, Martyn C</creatorcontrib><creatorcontrib>Roberts, Clive J</creatorcontrib><creatorcontrib>Tendler, Saul J B</creatorcontrib><creatorcontrib>Williams, Philip M</creatorcontrib><title>An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><description>To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods.
Atomic force microscopy (AFM) force measurements were performed as a function of humidity (<10% to 65% RH) using two systems. The first system used clean AFM tips against compressed disks of micronized and solution enhanced dispersion by supercritical fluid (SEDS) salbutamol. The second system involved particles of both salbutamol samples mounted onto the apexes of AFM cantilevers, and force measurements being performed against a highly orientated pyrolytic graphite (HOPG) substrate. Following these measurements, the contact asperities of the tips were characterized.
The first system showed a maximum in the observed adhesion at 22% relative humidity (RH) for the SEDS salbutamol compared to 44% RH for the micronized salbutamol. The second system showed a mix of peaks and continual increases in adhesion with humidity. The predicted Johnson-Kendall-Roberts forces were calculated and divided by the actual forces in order to produce a ratio.
By relating the nature of the asperities to the force measurements, we propose a model in which adhesion scenarios range from single asperity nanometer-scale contact in which peaks in the adhesion were observed, to multiasperity contact where a continuous increase in adhesion was seen with humidity.</description><subject>Adhesiveness</subject><subject>Albuterol - chemistry</subject><subject>Algorithms</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Chromatography, Supercritical Fluid - methods</subject><subject>Friction</subject><subject>Graphite - chemistry</subject><subject>Humidity</subject><subject>Microscopy, Atomic Force - instrumentation</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Powders - chemistry</subject><subject>Solubility</subject><subject>Technology, Pharmaceutical - methods</subject><issn>0724-8741</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkctu3CAUhlHVqJmkfYUKZZGdJ9wMdnaTKDcpUbtope4QA4eOI9s4gBfzEnnm4mSkSGVzLvrOz4EfoTNK1pQwfnF1-fN-87Qmy2Eta_haKCn4urWf0IrWilctEX8-oxVRTFSNEvQYnaT0XPCGtuILOqY1o4zW7Qq9bkZschg6i32IFnDJYkg2THuc8uz2OHicd4DBe7B5qUYzFsD0gG0YsynNvxAGyHGPzehwmqM3RcjuYOjS0g3jm4JxO0hdKYrGtDNxKNScu6KEJxNL0kP6io686RN8O8RT9Pv25tf1ffX44-7hevNYWS5YrmpimHPl0VuvqODKNqTmjtPWeXDSQaO2tgGmhBOSNYxYZxiXW8NsiY0DforO33WnGF5mSFmXXS30vRkhzElLKYXkrSzg2X_gc5jjWHbTjDEpiVKqQJfv0PJ1KYLXU-wGE_eaEr1Ypq_0Ypn-sEy_WaZbW4a_H26YtwO4j9GDR_wfWNSV9g</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Hooton, Jennifer C</creator><creator>German, Caroline S</creator><creator>Allen, Stephanie</creator><creator>Davies, Martyn C</creator><creator>Roberts, Clive J</creator><creator>Tendler, Saul J B</creator><creator>Williams, Philip M</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>200406</creationdate><title>An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles</title><author>Hooton, Jennifer C ; German, Caroline S ; Allen, Stephanie ; Davies, Martyn C ; Roberts, Clive J ; Tendler, Saul J B ; Williams, Philip M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-50a2dd764bf71437c8053d319dfed6de87bc8e274d462820cda236ba2ca238de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adhesiveness</topic><topic>Albuterol - chemistry</topic><topic>Algorithms</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Chromatography, Supercritical Fluid - methods</topic><topic>Friction</topic><topic>Graphite - chemistry</topic><topic>Humidity</topic><topic>Microscopy, Atomic Force - instrumentation</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Powders - chemistry</topic><topic>Solubility</topic><topic>Technology, Pharmaceutical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooton, Jennifer C</creatorcontrib><creatorcontrib>German, Caroline S</creatorcontrib><creatorcontrib>Allen, Stephanie</creatorcontrib><creatorcontrib>Davies, Martyn C</creatorcontrib><creatorcontrib>Roberts, Clive J</creatorcontrib><creatorcontrib>Tendler, Saul J B</creatorcontrib><creatorcontrib>Williams, Philip M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooton, Jennifer C</au><au>German, Caroline S</au><au>Allen, Stephanie</au><au>Davies, Martyn C</au><au>Roberts, Clive J</au><au>Tendler, Saul J B</au><au>Williams, Philip M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles</atitle><jtitle>Pharmaceutical research</jtitle><addtitle>Pharm Res</addtitle><date>2004-06</date><risdate>2004</risdate><volume>21</volume><issue>6</issue><spage>953</spage><epage>961</epage><pages>953-961</pages><issn>0724-8741</issn><eissn>1573-904X</eissn><abstract>To understand differences in particle adhesion observed with increasing humidity between samples of salbutamol sulfate prepared by two different methods.
Atomic force microscopy (AFM) force measurements were performed as a function of humidity (<10% to 65% RH) using two systems. The first system used clean AFM tips against compressed disks of micronized and solution enhanced dispersion by supercritical fluid (SEDS) salbutamol. The second system involved particles of both salbutamol samples mounted onto the apexes of AFM cantilevers, and force measurements being performed against a highly orientated pyrolytic graphite (HOPG) substrate. Following these measurements, the contact asperities of the tips were characterized.
The first system showed a maximum in the observed adhesion at 22% relative humidity (RH) for the SEDS salbutamol compared to 44% RH for the micronized salbutamol. The second system showed a mix of peaks and continual increases in adhesion with humidity. The predicted Johnson-Kendall-Roberts forces were calculated and divided by the actual forces in order to produce a ratio.
By relating the nature of the asperities to the force measurements, we propose a model in which adhesion scenarios range from single asperity nanometer-scale contact in which peaks in the adhesion were observed, to multiasperity contact where a continuous increase in adhesion was seen with humidity.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>15212159</pmid><doi>10.1023/B:PHAM.0000029283.47643.9c</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0724-8741 |
ispartof | Pharmaceutical research, 2004-06, Vol.21 (6), p.953-961 |
issn | 0724-8741 1573-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_66646396 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adhesiveness Albuterol - chemistry Algorithms Chemistry, Pharmaceutical - methods Chromatography, Supercritical Fluid - methods Friction Graphite - chemistry Humidity Microscopy, Atomic Force - instrumentation Microscopy, Atomic Force - methods Nanotechnology - methods Particle Size Powders - chemistry Solubility Technology, Pharmaceutical - methods |
title | An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20atomic%20force%20microscopy%20study%20of%20the%20effect%20of%20nanoscale%20contact%20geometry%20and%20surface%20chemistry%20on%20the%20adhesion%20of%20pharmaceutical%20particles&rft.jtitle=Pharmaceutical%20research&rft.au=Hooton,%20Jennifer%20C&rft.date=2004-06&rft.volume=21&rft.issue=6&rft.spage=953&rft.epage=961&rft.pages=953-961&rft.issn=0724-8741&rft.eissn=1573-904X&rft_id=info:doi/10.1023/B:PHAM.0000029283.47643.9c&rft_dat=%3Cproquest_cross%3E66646396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222660777&rft_id=info:pmid/15212159&rfr_iscdi=true |