Involvement of Notch Signaling in Hippocampal Synaptic Plasticity

During development of the nervous system, the fate of stem cells is regulated by a cell surface receptor called Notch. Notch is also present in the adult mammalian brain; however, because Notch null mice die during embryonic development, it has proven difficult to determine the functions of Notch. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-06, Vol.101 (25), p.9458-9462
Hauptverfasser: Wang, Yue, Chan, Sic L., Miele, Lucio, Yao, Pamela J., Mackes, Jennifer, Ingram, Donald K., Mattson, Mark P., Furukawa, Katsutoshi, Andersen, Per O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During development of the nervous system, the fate of stem cells is regulated by a cell surface receptor called Notch. Notch is also present in the adult mammalian brain; however, because Notch null mice die during embryonic development, it has proven difficult to determine the functions of Notch. Here, we used Notch antisense transgenic mice that develop and reproduce normally, but exhibit reduced levels of Notch, to demonstrate a role for Notch signaling in synaptic plasticity. Mice with reduced Notch levels exhibit impaired long-term potentiation (LTP) at hippocampal CA1 synapses. A Notch ligand enhances LTP in normal mice and corrects the defect in LTP in Notch antisense transgenic mice. Levels of basal and stimulation-induced NF-κB activity were significantly decreased in mice with reduced Notch levels. These findings suggest an important role for Notch signaling in a form of synaptic plasticity known to be associated with learning and memory processes.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0308126101