Granulocyte Macrophage Colony-stimulating Factor Signaling and Proteasome Inhibition Delay Neutrophil Apoptosis by Increasing the Stability of Mcl-1

Human neutrophils normally have a very short half-life and die by apoptosis. Cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) can delay this apoptosis via increases in the cellular levels of Mcl-1, an anti-apoptotic protein of the Bcl-2 family with a rapid turnover rate. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-06, Vol.279 (26), p.26915-26921
Hauptverfasser: Derouet, Mathieu, Thomas, Luke, Cross, Andrew, Moots, Robert J., Edwards, Steven W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human neutrophils normally have a very short half-life and die by apoptosis. Cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) can delay this apoptosis via increases in the cellular levels of Mcl-1, an anti-apoptotic protein of the Bcl-2 family with a rapid turnover rate. Here we have shown that inhibition of the proteasome (a) decreases the rate of Mcl-1 turnover within neutrophils and (b) significantly delays apoptosis. This led us to determine whether GM-CSF could enhance neutrophil survival by altering the rate of Mcl-1 turnover. Addition of GM-CSF to neutrophils enhanced Mcl-1 stability and delayed apoptosis by signaling pathways requiring PI3K/Akt and p44/42 Erk/Mek, because inhibitors of these pathways completely abrogated the GM-CSF-mediated effect on both Mcl-1 stability and apoptosis delay. Conversely, induction of Mcl-1 hyperphosphorylation by the phosphatase inhibitor, okadaic acid, significantly accelerated both Mcl-1 turnover and apoptosis. Neither the calpain inhibitor, carbobenzoxy-valinyl-phenylalaninal, nor the pan caspase inhibitor, benzyloxycarbonyl-VAD-fluoromethylketone, had any effect on Mcl-1 stability under these conditions. These observations indicate that profound changes in the rate of neutrophil apoptosis following cytokine signaling occur via dynamic changes in the rate of Mcl-1 turnover via the proteasome.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M313875200