Equilibrium existence in the circle model with linear quadratic transport cost

We treat the problem of existence of a location-then-price equilibrium in the circle model with a linear quadratic type of transportation cost function which can be either convex or concave. We show the existence of a unique perfect equilibrium for the concave case when the linear and quadratic term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regional science and urban economics 1999-09, Vol.29 (5), p.605-615
Hauptverfasser: de Frutos, M.A., Hamoudi, H., Jarque, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We treat the problem of existence of a location-then-price equilibrium in the circle model with a linear quadratic type of transportation cost function which can be either convex or concave. We show the existence of a unique perfect equilibrium for the concave case when the linear and quadratic terms are equal and of a unique perfect equilibrium for the convex case when the linear term is equal to zero. Aside from these two cases, there are feasible locations by the firms for which no equilibrium in the price subgame exists. Finally, we provide a full taxonomy of the price equilibrium regions in terms of weights of the linear and quadratic terms in the cost function.
ISSN:0166-0462
1879-2308
DOI:10.1016/S0166-0462(99)00014-9