A Bayesian Multilevel Modeling Approach to Time-Series Cross-Sectional Data

The analysis of time-series cross-sectional (TSCS) data has become increasingly popular in political science. Meanwhile, political scientists are also becoming more interested in the use of multilevel models (MLM). However, little work exists to understand the benefits of multilevel modeling when ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Political analysis 2007-04, Vol.15 (2), p.165-181
Hauptverfasser: Shor, Boris, Bafumi, Joseph, Keele, Luke, Park, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 2
container_start_page 165
container_title Political analysis
container_volume 15
creator Shor, Boris
Bafumi, Joseph
Keele, Luke
Park, David
description The analysis of time-series cross-sectional (TSCS) data has become increasingly popular in political science. Meanwhile, political scientists are also becoming more interested in the use of multilevel models (MLM). However, little work exists to understand the benefits of multilevel modeling when applied to TSCS data. We employ Monte Carlo simulations to benchmark the performance of a Bayesian multilevel model for TSCS data. We find that the MLM performs as well or better than other common estimators for such data. Most importantly, the MLM is more general and offers researchers additional advantages.
doi_str_mv 10.1093/pan/mpm006
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_59774172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1093_pan_mpm006</cupid><jstor_id>25791887</jstor_id><oup_id>10.1093/pan/mpm006</oup_id><sourcerecordid>25791887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6f7e6425b2ddb31300d5eb47ccc30a709c792f15788aa61bbbc5cafbb902daeb3</originalsourceid><addsrcrecordid>eNp9kM1r3DAQxU1oIWnaS-8FU0gOpW4kW9ZYx81um29KaBJKLkKSx4k2tuVKdkn--yg4hNJCTzPD-zHz5iXJe0q-UCKKvUH1e93QEcI3ki3KgGdMVOJV7AmDjIoKNpM3IawJoQBCbCUni3RfPWCwqk_Ppna0Lf7GNj1zNba2v0kXw-CdMrfp6NIL22H2A73FkC69CyEOZrSuV226UqN6m7xuVBvw3XPdTi6_fb1YHman3w-OlovTzDDKx4w3gJzlpc7rWhe0IKQuUTMwxhREAREGRN7QEqpKKU611qY0qtFakLxWqIvtZHfeG639mjCMsrPBYNuqHt0UZCkAGIU8gh__Atdu8tFukFQwXlHOqgh9miHz9JLHRg7edso_SErkU6gyhirnUCO8M8NuGv7PfZi5dRidfyHzEgStKoh6Nus2jHj_oit_JzkUUMrDn9dydXJwfny1upbnkf_8bFJ12tv6Bv945d_zj5kPn_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194681648</pqid></control><display><type>article</type><title>A Bayesian Multilevel Modeling Approach to Time-Series Cross-Sectional Data</title><source>Jstor Complete Legacy</source><source>Political Science Complete</source><source>Worldwide Political Science Abstracts</source><source>Cambridge University Press Journals Complete</source><creator>Shor, Boris ; Bafumi, Joseph ; Keele, Luke ; Park, David</creator><creatorcontrib>Shor, Boris ; Bafumi, Joseph ; Keele, Luke ; Park, David</creatorcontrib><description>The analysis of time-series cross-sectional (TSCS) data has become increasingly popular in political science. Meanwhile, political scientists are also becoming more interested in the use of multilevel models (MLM). However, little work exists to understand the benefits of multilevel modeling when applied to TSCS data. We employ Monte Carlo simulations to benchmark the performance of a Bayesian multilevel model for TSCS data. We find that the MLM performs as well or better than other common estimators for such data. Most importantly, the MLM is more general and offers researchers additional advantages.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1093/pan/mpm006</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Bayesian analysis ; Correlations ; Data models ; Estimation bias ; Estimators ; Methodology (Data Analysis) ; Modeling ; Monte Carlo simulation ; Multilevel models ; Optimism ; Political science ; Statistical discrepancies ; Statistical variance ; Time series</subject><ispartof>Political analysis, 2007-04, Vol.15 (2), p.165-181</ispartof><rights>Copyright © The Author 2007. Published by Oxford University Press on behalf of the Society for Political Methodology</rights><rights>Copyright © 2007 Society for Political Methodology</rights><rights>The Author 2007. Published by Oxford University Press on behalf of the Society for Political Methodology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007</rights><rights>Copyright Oxford University Press(England) Spring 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6f7e6425b2ddb31300d5eb47ccc30a709c792f15788aa61bbbc5cafbb902daeb3</citedby><cites>FETCH-LOGICAL-c416t-6f7e6425b2ddb31300d5eb47ccc30a709c792f15788aa61bbbc5cafbb902daeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25791887$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198700006446/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,27901,27902,55603,57992,58225</link.rule.ids></links><search><creatorcontrib>Shor, Boris</creatorcontrib><creatorcontrib>Bafumi, Joseph</creatorcontrib><creatorcontrib>Keele, Luke</creatorcontrib><creatorcontrib>Park, David</creatorcontrib><title>A Bayesian Multilevel Modeling Approach to Time-Series Cross-Sectional Data</title><title>Political analysis</title><addtitle>Polit. anal</addtitle><description>The analysis of time-series cross-sectional (TSCS) data has become increasingly popular in political science. Meanwhile, political scientists are also becoming more interested in the use of multilevel models (MLM). However, little work exists to understand the benefits of multilevel modeling when applied to TSCS data. We employ Monte Carlo simulations to benchmark the performance of a Bayesian multilevel model for TSCS data. We find that the MLM performs as well or better than other common estimators for such data. Most importantly, the MLM is more general and offers researchers additional advantages.</description><subject>Bayesian analysis</subject><subject>Correlations</subject><subject>Data models</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Methodology (Data Analysis)</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Multilevel models</subject><subject>Optimism</subject><subject>Political science</subject><subject>Statistical discrepancies</subject><subject>Statistical variance</subject><subject>Time series</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp9kM1r3DAQxU1oIWnaS-8FU0gOpW4kW9ZYx81um29KaBJKLkKSx4k2tuVKdkn--yg4hNJCTzPD-zHz5iXJe0q-UCKKvUH1e93QEcI3ki3KgGdMVOJV7AmDjIoKNpM3IawJoQBCbCUni3RfPWCwqk_Ppna0Lf7GNj1zNba2v0kXw-CdMrfp6NIL22H2A73FkC69CyEOZrSuV226UqN6m7xuVBvw3XPdTi6_fb1YHman3w-OlovTzDDKx4w3gJzlpc7rWhe0IKQuUTMwxhREAREGRN7QEqpKKU611qY0qtFakLxWqIvtZHfeG639mjCMsrPBYNuqHt0UZCkAGIU8gh__Atdu8tFukFQwXlHOqgh9miHz9JLHRg7edso_SErkU6gyhirnUCO8M8NuGv7PfZi5dRidfyHzEgStKoh6Nus2jHj_oit_JzkUUMrDn9dydXJwfny1upbnkf_8bFJ12tv6Bv945d_zj5kPn_Q</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Shor, Boris</creator><creator>Bafumi, Joseph</creator><creator>Keele, Luke</creator><creator>Park, David</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>20070401</creationdate><title>A Bayesian Multilevel Modeling Approach to Time-Series Cross-Sectional Data</title><author>Shor, Boris ; Bafumi, Joseph ; Keele, Luke ; Park, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6f7e6425b2ddb31300d5eb47ccc30a709c792f15788aa61bbbc5cafbb902daeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian analysis</topic><topic>Correlations</topic><topic>Data models</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Methodology (Data Analysis)</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Multilevel models</topic><topic>Optimism</topic><topic>Political science</topic><topic>Statistical discrepancies</topic><topic>Statistical variance</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shor, Boris</creatorcontrib><creatorcontrib>Bafumi, Joseph</creatorcontrib><creatorcontrib>Keele, Luke</creatorcontrib><creatorcontrib>Park, David</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shor, Boris</au><au>Bafumi, Joseph</au><au>Keele, Luke</au><au>Park, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Multilevel Modeling Approach to Time-Series Cross-Sectional Data</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. anal</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>15</volume><issue>2</issue><spage>165</spage><epage>181</epage><pages>165-181</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>The analysis of time-series cross-sectional (TSCS) data has become increasingly popular in political science. Meanwhile, political scientists are also becoming more interested in the use of multilevel models (MLM). However, little work exists to understand the benefits of multilevel modeling when applied to TSCS data. We employ Monte Carlo simulations to benchmark the performance of a Bayesian multilevel model for TSCS data. We find that the MLM performs as well or better than other common estimators for such data. Most importantly, the MLM is more general and offers researchers additional advantages.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1093/pan/mpm006</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-1987
ispartof Political analysis, 2007-04, Vol.15 (2), p.165-181
issn 1047-1987
1476-4989
language eng
recordid cdi_proquest_miscellaneous_59774172
source Jstor Complete Legacy; Political Science Complete; Worldwide Political Science Abstracts; Cambridge University Press Journals Complete
subjects Bayesian analysis
Correlations
Data models
Estimation bias
Estimators
Methodology (Data Analysis)
Modeling
Monte Carlo simulation
Multilevel models
Optimism
Political science
Statistical discrepancies
Statistical variance
Time series
title A Bayesian Multilevel Modeling Approach to Time-Series Cross-Sectional Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Multilevel%20Modeling%20Approach%20to%20Time-Series%20Cross-Sectional%20Data&rft.jtitle=Political%20analysis&rft.au=Shor,%20Boris&rft.date=2007-04-01&rft.volume=15&rft.issue=2&rft.spage=165&rft.epage=181&rft.pages=165-181&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1093/pan/mpm006&rft_dat=%3Cjstor_proqu%3E25791887%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194681648&rft_id=info:pmid/&rft_cupid=10_1093_pan_mpm006&rft_jstor_id=25791887&rft_oup_id=10.1093/pan/mpm006&rfr_iscdi=true