A Bayesian Multilevel Modeling Approach to Time-Series Cross-Sectional Data
The analysis of time-series cross-sectional (TSCS) data has become increasingly popular in political science. Meanwhile, political scientists are also becoming more interested in the use of multilevel models (MLM). However, little work exists to understand the benefits of multilevel modeling when ap...
Gespeichert in:
Veröffentlicht in: | Political analysis 2007-04, Vol.15 (2), p.165-181 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The analysis of time-series cross-sectional (TSCS) data has become increasingly popular in political science. Meanwhile, political scientists are also becoming more interested in the use of multilevel models (MLM). However, little work exists to understand the benefits of multilevel modeling when applied to TSCS data. We employ Monte Carlo simulations to benchmark the performance of a Bayesian multilevel model for TSCS data. We find that the MLM performs as well or better than other common estimators for such data. Most importantly, the MLM is more general and offers researchers additional advantages. |
---|---|
ISSN: | 1047-1987 1476-4989 |
DOI: | 10.1093/pan/mpm006 |